cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A061082 a(n) = A053061(n)/n.

Original entry on oeis.org

11, 12, 13, 104, 105, 106, 107, 108, 109, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 10032, 10033, 10034, 10035, 10036, 10037, 10038, 10039, 10040, 10041, 10042
Offset: 1

Views

Author

Amarnath Murthy, Apr 17 2001

Keywords

References

  • A. Murthy, A note on the conjecture that the Smarandache nn-square (n concatenated with n square) sequence contains no perfect squares (to be published in the Smarandache Notions Journal).

Formula

a(n) = 10^floor(1 + 2log_10 n) + n. - Charles R Greathouse IV, Sep 20 2012

Extensions

More terms from David Wasserman, Oct 02 2005

A055436 a(n) = concatenation of n^2 and n.

Original entry on oeis.org

11, 42, 93, 164, 255, 366, 497, 648, 819, 10010, 12111, 14412, 16913, 19614, 22515, 25616, 28917, 32418, 36119, 40020, 44121, 48422, 52923, 57624, 62525, 67626, 72927, 78428, 84129, 90030, 96131, 102432, 108933, 115634, 122535, 129636, 136937, 144438, 152139
Offset: 1

Views

Author

Henry Bottomley, May 18 2000

Keywords

Crossrefs

Cf. A053061, A055437 (10n^2+n), A055438 (100n^2+n).

Programs

  • Magma
    [Seqint(Intseq(n) cat Intseq(n^2)): n in [1..40]]; // Vincenzo Librandi, Jan 03 2015
  • Maple
    a:= n-> parse(cat(n*n, n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 03 2015
  • Mathematica
    Table[n^2*10^IntegerLength[n] + n, {n, 36}] (* Jayanta Basu, Jul 12 2013 *)
    Table[FromDigits[Join[IntegerDigits[n^2], IntegerDigits[n]]],{n, 40}] (* Vincenzo Librandi, Jan 03 2015 *)

Formula

a(n) = n^2*floor(log_10(n) + 1) + n.
a(n) = A055437(n) if 1 <= n < 10, a(n) = A055438(n) if 10 <= n < 100.

A061086 a(n) is the concatenation of n with n^3.

Original entry on oeis.org

11, 28, 327, 464, 5125, 6216, 7343, 8512, 9729, 101000, 111331, 121728, 132197, 142744, 153375, 164096, 174913, 185832, 196859, 208000, 219261, 2210648, 2312167, 2413824, 2515625, 2617576, 2719683, 2821952, 2924389, 3027000, 3129791, 3232768, 3335937, 3439304
Offset: 1

Views

Author

Amarnath Murthy, Apr 19 2001

Keywords

Examples

			a(13) = 132197, where 2197 = 13^3.
		

References

  • Felice Russo, A set of Smarandache Functions, sequences and conjectures in number theory, page 65.

Crossrefs

Programs

  • Magma
    [Seqint(Intseq(n^3) cat Intseq(n)): n in [1..40]]; // Vincenzo Librandi, Jan 03 2015
    
  • Mathematica
    Table[FromDigits[Join[IntegerDigits[n], IntegerDigits[n^3]]],{n, 40}] (* Vincenzo Librandi, Jan 03 2015 *)
  • Python
    def a(n): return int(str(n) + str(n**3))
    print([a(n) for n in range(1, 35)]) # Michael S. Branicky, Nov 28 2021

Extensions

Offset corrected by Charles R Greathouse IV, Sep 20 2012
More terms from Vincenzo Librandi, Jan 03 2015

A239459 Concatenation of n^3 and n.

Original entry on oeis.org

11, 82, 273, 644, 1255, 2166, 3437, 5128, 7299, 100010, 133111, 172812, 219713, 274414, 337515, 409616, 491317, 583218, 685919, 800020, 926121, 1064822, 1216723, 1382424, 1562525, 1757626, 1968327, 2195228, 2438929, 2700030, 2979131, 3276832, 3593733
Offset: 1

Views

Author

Colin Barker, Mar 19 2014

Keywords

Comments

a(n) is divisible by n.

Examples

			a(13) = 219713 because 2197 = 13^3 and 13 = 13^1.
		

Crossrefs

Programs

  • Mathematica
    Table[ToExpression[ToString[n^3]<>ToString[n]],{n,1,30}] (* Vaclav Kotesovec, Mar 24 2014 *)
    Table[n^3*10^IntegerLength[n]+n,{n,40}] (* Harvey P. Dale, Sep 07 2020 *)
  • PARI
    vector(100, n, eval(Str(n^3, n)))

A239460 Concatenation of n^2 and n^3.

Original entry on oeis.org

11, 48, 927, 1664, 25125, 36216, 49343, 64512, 81729, 1001000, 1211331, 1441728, 1692197, 1962744, 2253375, 2564096, 2894913, 3245832, 3616859, 4008000, 4419261, 48410648, 52912167, 57613824, 62515625, 67617576, 72919683, 78421952, 84124389, 90027000
Offset: 1

Views

Author

Colin Barker, Mar 19 2014

Keywords

Comments

a(n) is divisible by n^2.

Examples

			a(9) = 81729 because 81 = 9^2 and 729 = 9^3.
		

Crossrefs

Programs

  • Mathematica
    Table[ToExpression[ToString[n^2]<>ToString[n^3]],{n,1,30}] (* Vaclav Kotesovec, Mar 24 2014 *)
    Table[FromDigits[Join[Flatten[IntegerDigits[{n^2,n^3}]]]],{n,30}] (* Harvey P. Dale, Oct 27 2019 *)
  • PARI
    vector(100, n, eval(Str(n^2, n^3)))

A239461 Concatenation of n^3 and n^2.

Original entry on oeis.org

11, 84, 279, 6416, 12525, 21636, 34349, 51264, 72981, 1000100, 1331121, 1728144, 2197169, 2744196, 3375225, 4096256, 4913289, 5832324, 6859361, 8000400, 9261441, 10648484, 12167529, 13824576, 15625625, 17576676, 19683729, 21952784, 24389841, 27000900
Offset: 1

Views

Author

Colin Barker, Mar 19 2014

Keywords

Comments

a(n) is divisible by n^2.

Examples

			a(9) = 72981 because 729 = 9^3 and 81 = 9^2.
		

Crossrefs

Programs

  • Mathematica
    Table[ToExpression[ToString[n^3]<>ToString[n^2]],{n,1,30}] (* Vaclav Kotesovec, Mar 24 2014 *)
    Table[FromDigits[Flatten[IntegerDigits/@{n^3,n^2}]],{n,30}] (* Harvey P. Dale, Nov 28 2024 *)
  • PARI
    vector(100, n, eval(Str(n^3, n^2)))

A261713 Natural numbers that can be split into two squares, leading zeros allowed.

Original entry on oeis.org

10, 11, 14, 19, 40, 41, 44, 49, 90, 91, 94, 99, 100, 101, 104, 109, 116, 125, 136, 149, 160, 161, 164, 169, 181, 250, 251, 254, 259, 360, 361, 364, 369, 400, 401, 404, 409, 416, 425, 436, 449, 464, 481, 490, 491, 494, 499, 640, 641, 644, 649, 810, 811, 814
Offset: 1

Views

Author

Giovanni Teofilatto, Aug 29 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local d, i, k;
          for k from 1+`if`(n=1, 1, a(n-1))
          do for i to length(k)-1 do
               if issqr(iquo(k, 10^i, 'd')) and
                  issqr(d) then return k fi
             od
          od
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Aug 29 2015
  • Mathematica
    qQ[n_] := Floor[ Sqrt@ n]^2 == n; ok[n_] := Catch[ Do[ If[ qQ@ Floor[n / 10^k] && qQ@ Mod[n, 10^k],Throw@ True], {k, IntegerLength[n] -1}]; False]; Select[Range@ 1000, ok] (* Giovanni Resta, Aug 29 2015 *)

Extensions

Name clarified by Zak Seidov, Aug 29 2015

A274620 If n^2 has an even number of digits, write n after the left half of the digits of n^2 and before the right half, otherwise if n^2 has 2t+1 digits, write n after the first t digits of n^2 and before the last t+1 digits.

Original entry on oeis.org

11, 24, 39, 146, 255, 366, 479, 684, 891, 11000, 11121, 11244, 11369, 11496, 21525, 21656, 21789, 31824, 31961, 42000, 42141, 42284, 52329, 52476, 62525, 62676, 72729, 72884, 82941, 93000, 93161, 103224, 103389, 113456, 123525, 123696, 133769, 143844, 153921, 164000
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2016

Keywords

Comments

In short, write n in the middle of n^2.
Portions of this sequence are sometimes given as puzzles.

Examples

			4^2 = 16 so a(4) = 1.4.6 = 146.
19^2 = 361 so a(19) = 3.19.61 = 31961.
		

References

Crossrefs

Programs

  • Mathematica
    nterms=100;Table[FromDigits[Flatten[Insert[d=IntegerDigits[n^2],IntegerDigits[n],Floor[Length[d]/2]+1]]],{n,nterms}] (* Paolo Xausa, Nov 24 2021 *)
  • Python
    def a(n):
        ss = str(n*n)
        t = len(ss)//2
        return int(ss[:t] + str(n) + ss[t:])
    print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Nov 24 2021

A378048 Numbers k such that k and k^2 together use at most 4 distinct decimal digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 35, 38, 40, 41, 45, 46, 50, 55, 56, 60, 63, 64, 65, 66, 68, 70, 74, 75, 76, 77, 80, 81, 83, 85, 88, 90, 91, 95, 96, 97, 99, 100, 101, 102, 105, 109, 110
Offset: 1

Views

Author

Jovan Radenkovicc, Nov 15 2024

Keywords

Comments

Problem: Is there a real constant c such that a(n) < n^c for all positive integers n?
All of A136808, A136809, A136816, ..., A137079 are subsequences. Many if not most terms of A058411, A058413, ... ("tridigital solutions") are also in this sequence; see also Hisanori Mishima's web page for some nontrivial solutions. - M. F. Hasler, Feb 02 2025

Examples

			816 is in the sequence since 816^2 = 665856 and both together use at most 4 distinct digits.
149 is not in the sequence since 149^2 = 22201 and both together use 5 distinct digits.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1000000] | #Set(Intseq(n)) le 4 and #Set(Intseq(n) cat Intseq(n^2)) le 4];
    
  • Mathematica
    Select[Range[0, 110], Length[Union @@ IntegerDigits@ {#, #^2}] < 5 &] (* Amiram Eldar, Nov 15 2024 *)
  • PARI
    isok(k) = #Set(concat(digits(k), digits(k^2))) <= 4; \\ Michel Marcus, Nov 15 2024
    
  • PARI
    is(n)=my(s=Set(digits(n))); #s<5 && #setunion(Set(digits(n^2)),s)<5 \\ Charles R Greathouse IV, Jan 30 2025
    
  • PARI
    is1(n)=#setunion(Set(digits(n^2)),Set(digits(n)))<5
    ok(m)=my(d=concat(apply(k->digits(lift(k)), [m,m^2]))
    test(d)=my(v=List(),D=10^d); for(n=0,D-1, if(ok(Mod(n,D)), listput(v,n))); Vec(v)
    res=test(8); \\ build a list of residues mod 10^8
    D=diff(concat(res,res[1]+10^8)); #D
    u=List(); for(n=0,10^7, if(is1(n) && !setsearch(n,res), listput(u,n))); \\ build exceptions
    setminus(select(is1,[0..n]),list(n))
    list(lim)=my(v=List(u)); forstep(n=0,lim,D, if(is1(n), listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Jan 30 2025
    
  • Python
    def ok(n): return len(set(str(n)+str(n**2))) <= 4
    print([k for k in range(111) if ok(k)]) # Michael S. Branicky, Nov 18 2024

Formula

A043537(A053061(a(n))) <= 4.
Trivially, a(n) >> n^1.66... where the exponent is log(10)/log(4) (A154155). - Charles R Greathouse IV, Jan 30 2025

A055435 (1/18)*Difference between concatenation of n and n^2 and concatenation of n^2 and n.

Original entry on oeis.org

0, -1, -3, 14, 15, 15, 14, 12, 9, 5, -55, -126, -208, -301, -405, -520, -646, -783, -931, -1090, -1260, -1441, -1633, -1836, -2050, -2275, -2511, -2758, -3016, -3285, -3565, 12144, 12342, 12529, 12705, 12870, 13024, 13167, 13299, 13420
Offset: 1

Views

Author

Henry Bottomley, May 18 2000

Keywords

Programs

  • Mathematica
    Table[((n*10^IntegerLength[x = n^2] + x) - (n^2*10^IntegerLength[n] + n))/18, {n, 40}] (* Jayanta Basu, Jul 12 2013 *)

Formula

a(n) = (A053061(n) - A055436(n))/18 = n*(10^floor(2*log_10(W2)+1) - 1 - n*(10^floor(log_10(W2)+1)-1))/18.
Showing 1-10 of 11 results. Next