A055457 5^a(n) exactly divides 5n. Or, 5-adic valuation of 5n.
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2
Offset: 1
Examples
a(5) = 2 since 5^2 exactly divides 5 times 5; a(25) = 3 since 5^3 exactly divides 5 times 25; a(125) = 4 since 5^4 exactly divides 5 times 125.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- Joseph Rosenbaum, Elementary Problem E319, American Mathematical Monthly, volume 45, number 10, December 1938, pages 694-696. (The A indices in P at equations 1' and 2' for p=5.)
Crossrefs
Programs
-
Maple
seq(padic:-ordp(5*n,5), n=1..1000); # Robert Israel, Dec 07 2015
-
Mathematica
max = 1000; s = (1/x)*Sum[x^(5^k)/(1-x^5^k), {k, 0, Log[5, max] // Ceiling }] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 04 2015 *) Table[IntegerExponent[n, 5] + 1, {n, 1, 100}] (* Amiram Eldar, Sep 21 2020 *)
-
PARI
a(n)=-sumdiv(n,d,moebius(5*d)*numdiv(n/d)) \\ Benoit Cloitre, Jun 21 2007
-
PARI
a(n)=valuation(5*n,5) \\ Anders Hellström, Dec 04 2015
-
Python
def A055457(n): c = 1 while not (a:=divmod(n,5))[1]: c += 1 n = a[0] return c # Chai Wah Wu, Feb 28 2025
Formula
G.f.: Sum_{k>=0} x^(5^k)/(1-x^5^k). - Ralf Stephan, Apr 12 2002
Multiplicative with a(p^e) = e+1 if p = 5, 1 otherwise.
a(n) = -Sum_{d|n} mu(5d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
Dirichlet g.f.: zeta(s)/(1-1/5^s). - R. J. Mathar, Feb 09 2011
a(n) = A112765(5n). - R. J. Mathar, Jul 17 2012
a(5n) = 1 + a(n). a(5n+k) = 1 for k = 1..4. - Robert Israel, Dec 07 2015
G.f. satisfies A(x^5) = A(x) - x/(1-x). - Robert Israel, Dec 08 2015
a(n) = A112765(n) + 1. - Amiram Eldar, Sep 21 2020
Sum_{k=1..n} a(k) ~ 5*n/4. - Vaclav Kotesovec, Sep 21 2020
G.f.: Sum_{i>=1, j>=0} x^(i*5^j). - Seiichi Manyama, Mar 23 2025
Comments