cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055457 5^a(n) exactly divides 5n. Or, 5-adic valuation of 5n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Alford Arnold, Jun 25 2000

Keywords

Comments

More generally, consider the sequence defined by p^a(n) exactly divides p*n. For p = 3 we have A051064 and for p = 2 we have A001511.
The number of powers of 5 that divide n. - Amiram Eldar, Mar 29 2025

Examples

			a(5) = 2 since 5^2 exactly divides 5 times 5;
a(25) = 3 since 5^3 exactly divides 5 times 25;
a(125) = 4 since 5^4 exactly divides 5 times 125.
		

Crossrefs

Cf. A007949, A112765, A191610 (partial sums).

Programs

  • Maple
    seq(padic:-ordp(5*n,5), n=1..1000); # Robert Israel, Dec 07 2015
  • Mathematica
    max = 1000; s = (1/x)*Sum[x^(5^k)/(1-x^5^k), {k, 0, Log[5, max] // Ceiling }] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 04 2015 *)
    Table[IntegerExponent[n, 5] + 1, {n, 1, 100}] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    a(n)=-sumdiv(n,d,moebius(5*d)*numdiv(n/d)) \\ Benoit Cloitre, Jun 21 2007
    
  • PARI
    a(n)=valuation(5*n,5) \\ Anders Hellström, Dec 04 2015
    
  • Python
    def A055457(n):
        c = 1
        while not (a:=divmod(n,5))[1]:
            c += 1
            n = a[0]
        return c # Chai Wah Wu, Feb 28 2025

Formula

G.f.: Sum_{k>=0} x^(5^k)/(1-x^5^k). - Ralf Stephan, Apr 12 2002
Multiplicative with a(p^e) = e+1 if p = 5, 1 otherwise.
a(n) = -Sum_{d|n} mu(5d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
Dirichlet g.f.: zeta(s)/(1-1/5^s). - R. J. Mathar, Feb 09 2011
a(n) = A112765(5n). - R. J. Mathar, Jul 17 2012
a(5n) = 1 + a(n). a(5n+k) = 1 for k = 1..4. - Robert Israel, Dec 07 2015
G.f. satisfies A(x^5) = A(x) - x/(1-x). - Robert Israel, Dec 08 2015
a(n) = A112765(n) + 1. - Amiram Eldar, Sep 21 2020
Sum_{k=1..n} a(k) ~ 5*n/4. - Vaclav Kotesovec, Sep 21 2020
G.f.: Sum_{i>=1, j>=0} x^(i*5^j). - Seiichi Manyama, Mar 23 2025