A055471 Divisible by the product of its nonzero digits.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 24, 30, 36, 40, 50, 60, 70, 80, 90, 100, 101, 102, 104, 105, 110, 111, 112, 115, 120, 128, 132, 135, 140, 144, 150, 175, 200, 208, 210, 212, 216, 220, 224, 240, 250, 300, 306, 312, 315, 360, 384, 400, 432, 480, 500
Offset: 1
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..11442 (terms 1..1000 from Zak Seidov)
- Jean-Marie De Koninck and Florian Luca, Positive integers divisible by the product of their nonzero digits, Port. Math. 64 (2007) 75-85. (This proof for upper bounds contains an error. See the paper below)
- Jean-Marie De Koninck and Florian Luca, Corrigendum to "Positive integers divisible by the product of their nonzero digits", Portugaliae Math. 64 (2007), 1: 75-85, Port. Math. 74 (2017), 169-170.
- Diophante, A365, les nombres prodigieux, July 2016.
- Michael Gohn, Joshua Harrington, Sophia Lebiere, Hani Samamah, Kyla Shappell, and Tony W. H. Wong, Arithmetic Progressions of b-Prodigious Numbers, J. Int. Seq., Vol. 25 (2022), Article 22.8.7.
Programs
-
MATLAB
m=1; for n=1:1000 v=dec2base(n,10)-'0'; v = v(v~=0); if mod(n,prod(v))==0 sol(m)=n; m=m+1; end end sol % Marius A. Burtea, May 07 2019
-
Magma
m:=1;sol:=[]; for n in [1..1000] do v:=Intseq(n,10); while &*v eq 0 do; Exclude(~v, 0); end while; if n mod &*(v) eq 0 then ; sol[m]:=n; m:=m+1; end if; end for; sol // Marius A. Burtea, May 07 2019
-
Mathematica
Select[Range[5000], IntegerQ[ #/(Times @@ Select[IntegerDigits[ # ], # > 0 &])] &] (* Alonso del Arte, Aug 04 2004 *)
-
Python
from math import prod def ok(n): return n > 0 and n%prod([int(d) for d in str(n) if d!='0']) == 0 print(list(filter(ok, range(501)))) # Michael S. Branicky, Jul 27 2021
Extensions
Corrected by Patrick De Geest, Aug 15 2000
Comments