A353148
Decimal repunits written in base 9.
Original entry on oeis.org
0, 1, 12, 133, 1464, 16215, 178366, 2073137, 22814518, 252060710, 2772667811, 31610457022, 347715137243, 3835866520674, 43305642727525, 476363171113776, 5351104882252647, 58862154814780228, 658583714063682520, 7355531854711617721, 82021851512827806032
Offset: 0
A325203
a(n) is 10^n represented in bijective base-9 numeration.
Original entry on oeis.org
1, 11, 121, 1331, 14641, 162151, 1783661, 19731371, 228145181, 2519596991, 27726678111, 315994569221, 3477151372431, 38358665196741, 432956427275251, 4763631711137761, 53499948822526471, 588621548147792281, 6585837139636825191, 73555318547116177211
Offset: 0
a(1) = 11_bij9 = 1*9^1 + 1*9^0 = 9+1 = 10.
a(2) = 121_bij9 = 1*9^2 + 2*9^1 + 1*9^0 = 81+18+1 = 100.
a(3) = 1331_bij9 = 1*9^3 + 3*9^2 + 3*9^1 + 1*9^0 = 729+243+27+1 = 1000.
a(7) = 19731371_bij9 = 9*(9*(9*(9*(9*(9*(9*1+9)+7)+3)+1)+3)+7)+1 = 10^7.
-
b:= proc(n) local d, l, m; m:= n; l:= "";
while m>0 do d:= irem(m, 9, 'm');
if d=0 then d:=9; m:= m-1 fi; l:= d, l
od; parse(cat(l))
end:
a:= n-> b(10^n):
seq(a(n), n=0..23);
-
A325203(n)=A052382(10^n) \\ M. F. Hasler, Jan 13 2020
A055473
Powers of ten written in base 2.
Original entry on oeis.org
1, 1010, 1100100, 1111101000, 10011100010000, 11000011010100000, 11110100001001000000, 100110001001011010000000, 101111101011110000100000000, 111011100110101100101000000000, 1001010100000010111110010000000000, 1011101001000011101101110100000000000
Offset: 0
-
FromDigits /@ IntegerDigits[10^Range[0, 9], 2] (* Jayanta Basu, Jul 12 2013 *)
-
a(n)=subst(Pol(binary(10^n)),x,10)
-
a(n) = fromdigits(binary(10^n)); \\ Michel Marcus, Apr 27 2022
-
def a(n): return int(bin(10**n)[2:])
print([a(n) for n in range(12)]) # Michael S. Branicky, Apr 27 2022
Showing 1-3 of 3 results.
Comments