cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A353148 Decimal repunits written in base 9.

Original entry on oeis.org

0, 1, 12, 133, 1464, 16215, 178366, 2073137, 22814518, 252060710, 2772667811, 31610457022, 347715137243, 3835866520674, 43305642727525, 476363171113776, 5351104882252647, 58862154814780228, 658583714063682520, 7355531854711617721, 82021851512827806032
Offset: 0

Views

Author

Seiichi Manyama, Apr 26 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = fromdigits(digits((10^n-1)/9, 9));

Formula

a(n) = A007095(A002275(n)).
a(n) = (A055479(n) - 1)/10. - Hugo Pfoertner, Apr 26 2022

A325203 a(n) is 10^n represented in bijective base-9 numeration.

Original entry on oeis.org

1, 11, 121, 1331, 14641, 162151, 1783661, 19731371, 228145181, 2519596991, 27726678111, 315994569221, 3477151372431, 38358665196741, 432956427275251, 4763631711137761, 53499948822526471, 588621548147792281, 6585837139636825191, 73555318547116177211
Offset: 0

Views

Author

Alois P. Heinz, Sep 05 2019

Keywords

Comments

Differs from A055479 first at n = 7: a(7) = 19731371 < 20731371 = A055479(7).
Also: the (10^n)-th zeroless number. - M. F. Hasler, Jan 13 2020

Examples

			a(1) = 11_bij9   =                 1*9^1 + 1*9^0 =           9+1 =   10.
a(2) = 121_bij9  =         1*9^2 + 2*9^1 + 1*9^0 =       81+18+1 =  100.
a(3) = 1331_bij9 = 1*9^3 + 3*9^2 + 3*9^1 + 1*9^0 =  729+243+27+1 = 1000.
a(7) = 19731371_bij9 = 9*(9*(9*(9*(9*(9*(9*1+9)+7)+3)+1)+3)+7)+1 = 10^7.
		

Crossrefs

Cf. A011557, A052382 (zeroless numbers), A055479, A309908.

Programs

  • Maple
    b:= proc(n) local d, l, m; m:= n; l:= "";
          while m>0 do d:= irem(m, 9, 'm');
            if d=0 then d:=9; m:= m-1 fi; l:= d, l
          od; parse(cat(l))
        end:
    a:= n-> b(10^n):
    seq(a(n), n=0..23);
  • PARI
    A325203(n)=A052382(10^n) \\ M. F. Hasler, Jan 13 2020

Formula

a(n) = A052382(10^n) = A052382(A011557(n)).

A055473 Powers of ten written in base 2.

Original entry on oeis.org

1, 1010, 1100100, 1111101000, 10011100010000, 11000011010100000, 11110100001001000000, 100110001001011010000000, 101111101011110000100000000, 111011100110101100101000000000, 1001010100000010111110010000000000, 1011101001000011101101110100000000000
Offset: 0

Views

Author

Henry Bottomley, Jun 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    FromDigits /@ IntegerDigits[10^Range[0, 9], 2] (* Jayanta Basu, Jul 12 2013 *)
  • PARI
    a(n)=subst(Pol(binary(10^n)),x,10)
    
  • PARI
    a(n) = fromdigits(binary(10^n)); \\ Michel Marcus, Apr 27 2022
    
  • Python
    def a(n): return int(bin(10**n)[2:])
    print([a(n) for n in range(12)]) # Michael S. Branicky, Apr 27 2022

Formula

a(n) = A007088(A011557(n)). - Seiichi Manyama, Apr 27 2022
Showing 1-3 of 3 results.