A055484 Number of unlabeled 3-element intersecting families (with not necessarily distinct sets) of an n-element set.
1, 4, 14, 39, 96, 213, 437, 837, 1520, 2632, 4380, 7040, 10979, 16668, 24716, 35879, 51104, 71549, 98625, 134025, 179782, 238292, 312386, 405368, 521083, 663968, 839140, 1052439, 1310534, 1620985, 1992343, 2434229, 2957458, 3574108
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (in Russian), Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
- Index entries for linear recurrences with constant coefficients, signature (4, -4, -2, 2, 4, 3, -12, 3, 4, 2, -2, -4, 4, -1).
Programs
-
Mathematica
Rest[CoefficientList[Series[-x*(x^3 - x^2 - 1)*(x^6 + x^4 + 2*x^3 + x^2 + 1)/((x^3 - 1)^2*(x^2 - 1)^2*(x - 1)^4), {x, 0, 50}], x]] (* G. C. Greubel, Oct 06 2017 *) LinearRecurrence[{4,-4,-2,2,4,3,-12,3,4,2,-2,-4,4,-1},{1,4,14,39,96,213,437,837,1520,2632,4380,7040,10979,16668},40] (* Harvey P. Dale, Jun 10 2024 *)
-
PARI
x='x+O('x^50); Vec(-x*(x^3-x^2-1)*(x^6+x^4+2*x^3+x^2+1)/( (x^3-1)^2*(x^2-1)^2*(x-1)^4)) \\ G. C. Greubel, Oct 06 2017
Formula
G.f.: -x*(x^3-x^2-1)*(x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).
Extensions
More terms from James Sellers, Jul 04 2000