Original entry on oeis.org
1, 24, 5760, 580608, 1393459200, 73574645760, 24103053950976000, 578473294823424000, 9440684171518279680000, 271211974879377138647040000, 3579998068407778230140928000000, 282308419108727654719684608000000, 258955866680053703121272297226240000000
Offset: 0
Denominators of the fractions 1, 11/24, 2447/5760, 238043/580608, ... (see A055505/A055535).
- Harlan J. Brothers and John A. Knox,, New closed-form approximations to the logarithmic constant e, Math. Intelligencer, 20 (1998), 25-29. MR1646709 (2000c:11209).
- Chao-Ping Chen and Junesang Choi, An Asymptotic Formula for (1+1/x)^x Based on the Partition Function, Amer. Math. Monthly 121 (2014), no. 4, 338-343. MR3183017.
- John A. Knox and Harlan J. Brothers, Novel series-based approximations to e, College Math. J. 30 (1999), no. 4, 269-275. MR1717867 (2000i:11198).
A055505
Numerators in expansion of (1-x)^(-1/x)/e.
Original entry on oeis.org
1, 1, 11, 7, 2447, 959, 238043, 67223, 559440199, 123377159, 29128857391, 5267725147, 9447595434410813, 1447646915836493, 225037938358318573, 29911565062525361, 3651003047854884043877, 38950782815463986767
Offset: 0
1+1/2*x+11/24*x^2+7/16*x^3+2447/5760*x^4+...
1, -1/2, 11/24, -7/16, 2447/5760, -959/2304, 238043/580608, -67223/165888, ...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 293, Problem 11.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.1.
- G. C. Greubel, Table of n, a(n) for n = 0..250
- Markus Brede, On the convergence of the sequence defining Euler's number, Math. Intelligencer, 27, no. 3 (2005), 6-7.
- Chao-Ping Chen and Junesang Choi, An Asymptotic Formula for (1+1/x)^x Based on the Partition Function, Amer. Math. Monthly 121 (2014), no. 4, 338--343. MR3183017.
- Branko Malesevic, Yue Hu, and Cristinel Mortici, Accurate Estimates of (1+x)^{1/x} Involved in Carleman Inequality and Keller Limit, arXiv:1801.04963 [math.CA], 2018.
-
T:= proc(u) local k, l; add( Stirling1(u+k,k)*((u+k)!)^(-1)* add( (-1)^l/l!, l=0..u-k), k=0..u); end;
-
a[n_] := Sum[StirlingS1[n+k, k]/(n+k)!*Sum[(-1)^j/j!, {j, 0, n-k}], {k, 0, n}]; Table[a[n] // Numerator // Abs, {n, 0, 17}] (* Jean-François Alcover, Mar 04 2014, after Maple *)
Numerator[((1-x)^(-1/x)/E + O[x]^20)[[3]]] (* or *)
Numerator[Table[Sum[StirlingS1[n+k, k] Subfactorial[n-k] Binomial[2n, n+k], {k, 0, n}] (-1)^n/(2n)!, {n, 0, 10}]] (* Vladimir Reshetnikov, Sep 23 2016 *)
Original entry on oeis.org
1, 1, 11, 315, 17129, 1510425, 196385475, 35327367075, 8399994587985, 2550903574364145, 963207568455370875, 442613044315692124875, 243195136160954426677305, 157442856285298191126143625, 118607799383105394973766029875, 102867257381973743111023517821875
Offset: 0
-
Table[(-1)^n Sum[StirlingS1[n+k, k] Subfactorial[n-k] Binomial[2n, n+k], {k, 0, n}], {n, 0, 20}]
A106827
Numerators in expansion of (1 - x)^(-1/x) / e.
Original entry on oeis.org
1, 1, 11, 315, 17129, 1510425, 196385475, 35327367075, 8399994587985, 2550903574364145, 963207568455370875, 442613044315692124875, 243195136160954426677305, 157442856285298191126143625, 118607799383105394973766029875, 102867257381973743111023517821875
Offset: 0
G.f. = 1 + 1*x/2! + 11*x^2/4! + 315*x^3/6! + 17129*x^4/8! + 503475*x^5/10! + ...
- L. Comtet, Analyse Combinatoire, P. U. F., 1970, tome second, p. 140, #12.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 293, Problem 11.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1 . 3 . 1.
-
m:=31; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&*[Exp(x^(j-1)/j): j in [2..40]]) )); [Factorial(2*n-2)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 14 2021
-
Table[(-1)^n Sum[StirlingS1[n+k, k] Subfactorial[n-k] Binomial[2n, n+k], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 23 2016 *)
With[{m=30}, CoefficientList[Series[(1-x)^(-1/x)/E, {x,0,m}], x]*(2*Range[0,m])!] (* G. C. Greubel, Sep 14 2021 *)
-
def A_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( product(exp(x^(j-1)/j) for j in (2..41)) ).list()
A=A_list(40)
[factorial(2*n)*A[n] for n in (0..31)] # G. C. Greubel, Sep 14 2021
Original entry on oeis.org
1, 11, 2447, 238043, 559440199, 29128857391, 9447595434410813, 225037938358318573, 3651003047854884043877, 104388909491649724435759747, 1372557084260440289321615059133, 107881945709178295095123859185817, 98682616643700175634367947900986085893
Offset: 0
Numerators of the fractions 1, 11/24, 2447/5760, 238043/580608, ... (see A055505/A055535).
- Harlan J. Brothers and John A. Knox,, New closed-form approximations to the logarithmic constant e, Math. Intelligencer, 20 (1998), 25-29. MR1646709 (2000c:11209).
- Chao-Ping Chen and Junesang Choi, An Asymptotic Formula for (1+1/x)^x Based on the Partition Function, Amer. Math. Monthly 121 (2014), no. 4, 338-343. MR3183017.
- John A. Knox and Harlan J. Brothers, Novel series-based approximations to e, College Math. J. 30 (1999), no. 4, 269-275. MR1717867 (2000i:11198).
Showing 1-5 of 5 results.
Comments