A055545 Number of unlabeled matroids on n points.
1, 2, 4, 8, 17, 38, 98, 306, 1724, 383172
Offset: 0
References
- J. G. Oxley, Matroid Theory. Oxford, England: Oxford University Press, 1993. See p. 473.
Links
- Dragan M. Acketa, On the enumeration of matroids of rank-2, Zbornik radova Prirodnomatematickog fakulteta-Univerzitet u Novom Sadu 8 (1978): 83-90. - _N. J. A. Sloane_, Dec 04 2022
- Jayant Apte and J. M. Walsh, Constrained Linear Representability of Polymatroids and Algorithms for Computing Achievability Proofs in Network Coding, arXiv preprint arXiv:1605.04598 [cs.IT], 2016-2017.
- Jesus DeLoera, Yvonne Kemper, and Steven Klee, h-vectors of small matroid complexes, arXiv:1106.2576 [math.CO], 2011.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- S. C. Locke, Matroids
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, arXiv:math/0702316 [math.CO], 2007.
- Dillon Mayhew and Gordon F. Royle, Matroids with nine elements, J. Combin. Theory Ser. B 98(2) (2008), 415-431.
- Gordon Royle and Dillon Mayhew, 9-element matroids.
- Eric Weisstein's World of Mathematics, Matroid.
- Eric Weisstein's World of Mathematics, Graph Vertex.
- D. J. A. Welsh, A bound for the number of matroids, J. Combinat. Theory, Ser. A, 6 (1969), 313-316. - From _N. J. A. Sloane_, May 06 2012
- Index entries for sequences related to matroids
Extensions
a(9) from Gordon Royle, Dec 23 2006
Name clarified by Lorenzo Sauras Altuzarra, Aug 10 2023
Comments