cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055548 Number of normal n X n (-1,1)-matrices.

Original entry on oeis.org

2, 12, 80, 2096, 49792, 3449088, 357236224, 84783217408
Offset: 1

Views

Author

Keywords

Comments

Obviously a(n) <= 2^(n^2) = A002416(n) - R. J. Mathar, Mar 14 2006

References

  • W. H. Press et al., Numerical Recipes, Cambridge, 1986; Chapter 11.

Crossrefs

Programs

  • PARI
    NormaQ(a,n) = { my(aT) ; aT=mattranspose(a) ; return( a*aT == aT*a ); }
    combMat(no,n) = { my(a,noshif) ; a = matrix(n,n) ; noshif=no ; for(co=1,n, for(ro=1,n, if( (noshif %2)== 1,a[ro,co] = 1, a[ro,co] = -1) ; noshif = floor(noshif/2) ; ) ) ; return(a) ; }
    { for (n = 1, 10, count = 0; a = matrix(n,n) ; for( no=0,2^(n^2)-1, a = combMat(no,n) ; count += NormaQ(a,n) ; /* if(no%1000==0,print(n," ",(no/2^(n^2)+0.)," ",count)) ; */ ) ; print(count) ; ) } \\ R. J. Mathar, Mar 14 2006

Extensions

a(5) from R. J. Mathar, Mar 14 2006
a(6)-a(7) from Georg Muntingh, Jan 31 2014
Offset corrected and a(8) from Bert Dobbelaere, Sep 21 2020

A055549 Number of normal n X n (-1,0,1)-matrices.

Original entry on oeis.org

3, 33, 939, 75041, 15901363, 10833591489
Offset: 1

Views

Author

Keywords

References

  • W. H. Press et al., Numerical Recipes, Cambridge, 1986; Chapter 11.

Crossrefs

Programs

  • Mathematica
    normalQ[a_] := Block[{b=Transpose[a]}, a.b === b.a]; cnt[n_]:= Block[{c=0,q=n^2}, Do[If[normalQ@Partition[IntegerDigits[t-1,3,q]-1, n], c++ ],{t,3^q}]; c]; Array[cnt,4] (* Giovanni Resta, Apr 03 2006 *)

Extensions

a(4) from Giovanni Resta, Apr 03 2006
a(5) from Georg Muntingh, Feb 03 2014
a(6) from Bert Dobbelaere, Sep 20 2020

A308088 Normal matrices of order n over GF(2).

Original entry on oeis.org

2, 8, 80, 1472, 56192, 3934208, 557649920, 154665746432
Offset: 1

Views

Author

Brendan McKay, May 11 2019

Keywords

Comments

A matrix A is normal if A^T A = A A^T, where for this sequence multiplication is performed in the field of two elements.

Crossrefs

A055547 counts 0-1 matrices normal over the integers.
Showing 1-3 of 3 results.