cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A055547 Number of normal n X n matrices with entries {0,1}.

Original entry on oeis.org

2, 8, 68, 1124, 36112, 2263268, 281249824, 70329901860, 35546752694048
Offset: 1

Views

Author

Keywords

Comments

A complex matrix M is normal if M^H M = M M^H, where H is conjugate transpose.
Let M be an n X n complex matrix with eigenvalues l_1, ..., l_n. The following are equivalent:
(a) M is normal;
(b) There is a unitary matrix U such that U^H M U is diagonal;
(c) Sum_{i,j = 1..n} |M_{i,j}|^2 = |l_1|^2 + ... + |l_n|^2; and
(d) M has an orthonormal set of n eigenvectors.
If a normal matrix M is split into the symmetric and antisymmetric matrices M=A+S with S=(M+M^H)/2 and A=(M-M^H)/2, M^H the transpose of M, A must be a generalized Tournament matrix. (For Tournament matrices each row and each column sums to zero.) The "generalization" is that zeros (indicating a tie between the players) may occur outside the main matrix diagonal. A is therefore a member of the set of the antisymmetric ternary matrices (elements -1,0,+1) counted in A007081(n), because there is a 1-to-1 mapping of the Tournament matrix onto the labeled edge-oriented Eulerian graphs. - R. J. Mathar, Mar 22 2006

References

  • G. H. Golub and C. F. van Loan, Matrix Computations, Johns Hopkins, 1989, p. 336.
  • R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge, 1988, Section 2.5.
  • W. H. Press et al., Numerical Recipes, Cambridge, 1986; Chapter 11.

Crossrefs

Programs

  • Mathematica
    Options[NormalMatrixQ]={ ZeroTest->(#===0&) };
    Matrices[n_, l_List:{0, 1}] := Partition[ #, n]&/@Flatten[Outer[List, Sequence@@Table[l, {n^2}]], n^2-1]
    NormalMatrixQ[a_List?MatrixQ, opts___] := Module[ { b=Conjugate@Transpose@a, zerotest=ZeroTest/.{opts}/.Options[NormalMatrixQ] }, (zerotest/@And@@Flatten[a.b-b.a])||Dimensions[a]=={1, 1} ]
    Table[Count[Matrices[n, {0, 1}], _?NormalMatrixQ], {n, 4}]
  • PARI
    NormaQ(a,n) = { local(aT) ; aT=mattranspose(a) ; if( a*aT == aT*a,1,0) ; } combMat(no,n) = { local(a,noshif) ; a = matrix(n,n) ; noshif=no ; for(co=1,n, for(ro=1,n, if( (noshif %2)== 1,a[ro,co] = 1, a[ro,co] = 0) ; noshif = floor(noshif/2) ; ) ) ; return(a) ; } { for (n = 1, 5, count = 0; a = matrix(n,n) ; for( no=0,2^(n^2)-1, a = combMat(no,n) ; count += NormaQ(a,n) ; ) ; print(count) ; ) } \\ R. J. Mathar, Mar 15 2006

Formula

a(n) >= 2^[n*(n+1)/2] = A006125(n+1) because all symmetric binary matrices (which have n*(n+1)/2 independent elements) are normal. - R. J. Mathar, Mar 22 2006

Extensions

Entry revised by N. J. A. Sloane, Jan 15 2004
a(5) from R. J. Mathar, Mar 15 2006
a(6) from R. J. Mathar, Mar 22 2006
Statement (c) corrected. - Max Alekseyev, Oct 18 2008
a(7) from Georg Muntingh, Feb 03 2014
a(8) and a(9) from Brendan McKay, May 09 2019

A055548 Number of normal n X n (-1,1)-matrices.

Original entry on oeis.org

2, 12, 80, 2096, 49792, 3449088, 357236224, 84783217408
Offset: 1

Views

Author

Keywords

Comments

Obviously a(n) <= 2^(n^2) = A002416(n) - R. J. Mathar, Mar 14 2006

References

  • W. H. Press et al., Numerical Recipes, Cambridge, 1986; Chapter 11.

Crossrefs

Programs

  • PARI
    NormaQ(a,n) = { my(aT) ; aT=mattranspose(a) ; return( a*aT == aT*a ); }
    combMat(no,n) = { my(a,noshif) ; a = matrix(n,n) ; noshif=no ; for(co=1,n, for(ro=1,n, if( (noshif %2)== 1,a[ro,co] = 1, a[ro,co] = -1) ; noshif = floor(noshif/2) ; ) ) ; return(a) ; }
    { for (n = 1, 10, count = 0; a = matrix(n,n) ; for( no=0,2^(n^2)-1, a = combMat(no,n) ; count += NormaQ(a,n) ; /* if(no%1000==0,print(n," ",(no/2^(n^2)+0.)," ",count)) ; */ ) ; print(count) ; ) } \\ R. J. Mathar, Mar 14 2006

Extensions

a(5) from R. J. Mathar, Mar 14 2006
a(6)-a(7) from Georg Muntingh, Jan 31 2014
Offset corrected and a(8) from Bert Dobbelaere, Sep 21 2020
Showing 1-2 of 2 results.