cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A194352 First of quadruples of consecutive happy numbers.

Original entry on oeis.org

7839, 8739, 11248, 12148, 21148, 44488, 44489, 44939, 49439, 70839, 78039, 80739, 87039, 94439, 101248, 102148, 110248, 112048, 120148, 121048, 201148, 210148, 211048, 222688, 222689, 226288, 226289, 236839, 238639, 258598, 258599, 262288, 262289, 263839
Offset: 1

Views

Author

Martin Renner, Aug 22 2011

Keywords

Examples

			7839, 7840, 7841, 7842 are the first of four consecutive integers each of which is a happy number, hence a(1) = 7839.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Total[IntegerDigits[n]^2]; t = Select[Range[300000], NestWhile[f, #, UnsameQ, All] == 1 &]; t[[Select[Range[Length[t] - 3],  t[[#]] == t[[# + 1]] - 1 == t[[# + 2]] - 2 == t[[# + 3]] - 3 &]]] (* T. D. Noe, Aug 22 2011 *)

A217705 Smallest number greater than 1 that is happy under bases 2 through n.

Original entry on oeis.org

2, 3, 3, 23, 79, 2207, 58775, 569669, 11814485, 210511543, 73748383237
Offset: 2

Views

Author

Sergio Pimentel, Mar 20 2013

Keywords

Comments

A happy number is a number that after iteration of sum of squares of digits eventually reaches 1 (A007770). The happy property is base-dependent. This sequence lists the smallest number that is happy in bases 2, 3, ..., n.
All numbers are happy in binary and base 4.

Examples

			a(8) = 58775 because:
Base 2: 1110010110010111 - 1010 - 10 - 1,
Base 3: 2222121212 - 1011 - 10 - 1,
Base 4: 321121113 - 132 - 32 - 31 - 22 - 20 - 10 - 1,
Base 5: 3340100 - 120 - 10 - 1,
Base 6: 1132035 - 121 - 10 - 1,
Base 7: 333233 - 100 - 1,
Base 8: 162627 - 202 - 10 - 1,
Base 9 fails since the end is the 58 - 108 - 72 cycle and fails to reach 1.
		

Crossrefs

Programs

  • PARI
    ssd(n,b)=my(s);while(n,s+=(n%b)^2;n\=b);s
    happy(k,b)=my(t=ssd(k,b));k=ssd(t,b);while(t!=k&&k>1,t=ssd(t,b);k=ssd(ssd(k,b),b));k==1
    h3(k)=while(k>8, k=ssd(k,3));k==1 || k==3
    a(n)=if(n<4,return(n));my(k=2);while(k++, if(!h3(k),next); for(b=5,n, if(!happy(k,b), next(2)));return(k)) \\ Charles R Greathouse IV, Mar 22 2013

Extensions

a(9)-a(12) from Giovanni Resta, Mar 21 2013

A194355 First of quintuples of consecutive happy numbers.

Original entry on oeis.org

44488, 222688, 226288, 258598, 262288, 285598, 404488, 440488, 444088, 528598, 582598, 622288, 825598, 852598, 1113688, 1116388, 1131688, 1136188, 1161388, 1163188, 1233588, 1235388, 1253388, 1311688, 1316188, 1323588, 1325388, 1332588, 1335288, 1352388
Offset: 1

Views

Author

T. D. Noe, Aug 24 2011

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Total[IntegerDigits[n]^2]; t = Select[Range[1500000], NestWhile[f, #, UnsameQ, All] == 1 &]; t[[Select[Range[Length[t] - 3],  t[[#]] == t[[# + 1]] - 1 == t[[# + 2]] - 2 == t[[# + 3]] - 3 == t[[# + 4]] - 4  &]]] (* T. D. Noe, Aug 24 2011 *)
Showing 1-3 of 3 results.