A055631 Sum of Euler's totient function phi of distinct primes dividing n.
0, 1, 2, 1, 4, 3, 6, 1, 2, 5, 10, 3, 12, 7, 6, 1, 16, 3, 18, 5, 8, 11, 22, 3, 4, 13, 2, 7, 28, 7, 30, 1, 12, 17, 10, 3, 36, 19, 14, 5, 40, 9, 42, 11, 6, 23, 46, 3, 6, 5, 18, 13, 52, 3, 14, 7, 20, 29, 58, 7, 60, 31, 8, 1, 16, 13, 66, 17, 24, 11, 70, 3, 72, 37, 6, 19, 16, 15, 78, 5, 2
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Maple
with(numtheory); a := n -> add(f, f = map(phi, factorset(n))); seq(a(n), n = 1..81); # Peter Luschny, Mar 30 2014
-
Mathematica
Join[{0},Table[Total[EulerPhi[Transpose[FactorInteger[n]][[1]]]],{n,2,90}]] (* Harvey P. Dale, Oct 29 2012 *)
-
PARI
A055631(n)=sum(i=1,#n=factor(n)~,n[1,i]-1) \\ M. F. Hasler, Nov 10 2016
Formula
If n = p^w, a power of prime, then a(n) = p-1; if n = 2p, then a(n) = p = n/2.
Additive with a(p^e) = p-1: a(10) = a(2*5) = a(2)+a(5) = (2-1)+(5-1) = 5; a(28) = a(2^2*7) = a(2^2)+a(7) = 1+6 = 7. - Vladeta Jovovic, Oct 23 2001
G.f.: Sum_{k>=1} (prime(k) - 1) * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Aug 18 2021
Extensions
Edited by M. F. Hasler, Nov 10 2016