cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A055709 Numbers k such that k | sigma_5(k).

Original entry on oeis.org

1, 6, 22, 28, 66, 120, 198, 264, 308, 366, 440, 604, 672, 924, 984, 1320, 1464, 1694, 1717, 2013, 2296, 2464, 2574, 2970, 3434, 3608, 3960, 4026, 4228, 4598, 4920, 5082, 5151, 5348, 6200, 6600, 6644, 6776, 6868, 6888, 7320, 7392, 8052, 8128, 9504
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_5(k) is the sum of the 5th powers of the divisors of k (A001160).
Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[5, n], n]==0, Print[n]], {n, 1, 15000}]
    Select[Range[10000],Divisible[DivisorSigma[5,#],#]&] (* Harvey P. Dale, Aug 09 2013 *)
  • PARI
    is(n)=sigma(n,5)%n==0 \\ Charles R Greathouse IV, Feb 01 2013

A055712 Numbers k such that k | sigma_8(k).

Original entry on oeis.org

1, 84, 156, 204, 364, 476, 514, 1092, 1428, 2316, 2652, 2892, 6069, 6188, 6748, 12138, 12532, 16212, 16388, 18564, 20244, 24276, 30108, 37596, 39372, 49164, 63291, 78897, 87724, 99202, 114716, 126582, 147679, 157794, 167331
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_8(k) is the sum of the 8th powers of the divisors of k (A013956).
Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[8, n], n]==0, Print[n]], {n, 1, 10000}]
    Select[Range[170000],Divisible[DivisorSigma[8,#],#]&] (* Harvey P. Dale, Sep 15 2019 *)
  • PARI
    is(n)=sigma(n,8)%n==0 \\ Charles R Greathouse IV, Feb 04 2013

A055711 Numbers k such that k | sigma_7(k).

Original entry on oeis.org

1, 6, 28, 86, 120, 145, 258, 290, 435, 496, 580, 588, 672, 696, 870, 946, 1032, 1305, 1720, 1740, 2245, 2610, 2712, 2838, 3164, 3282, 3408, 3480, 3724, 3784, 4060, 4490, 5160, 5220, 6735, 6786, 6960, 7830, 8514, 8980, 9436, 9492, 9632, 9976
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_7(k) is the sum of the 7th powers of the divisors of k (A013955).
Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[7, n], n]==0, Print[n]], {n, 1, 10000}]
  • PARI
    is(n)=sigma(n,7)%n==0 \\ Charles R Greathouse IV, Feb 04 2013

A055713 Numbers k such that k | sigma_9(k).

Original entry on oeis.org

1, 6, 38, 42, 54, 114, 120, 135, 168, 190, 216, 222, 266, 270, 280, 285, 312, 342, 378, 456, 496, 540, 570, 672, 728, 760, 798, 840, 888, 945, 1026, 1064, 1080, 1140, 1330, 1512, 1554, 1560, 1710, 1782, 1806, 1862, 1890, 1962, 1976, 1995, 1998, 2160, 2166
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_9(k) is the sum of the 9th powers of the divisors of k (A013957).
Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[9, n], n]==0, Print[n]], {n, 1, 5000}]
  • PARI
    is(n)=sigma(n,9)%n==0 \\ Charles R Greathouse IV, Feb 04 2013

A055715 Numbers k such that k | sigma_11(k).

Original entry on oeis.org

1, 6, 28, 120, 402, 496, 644, 672, 920, 1366, 1608, 1932, 2680, 2760, 3417, 3966, 4098, 4623, 4975, 5152, 6210, 6834, 8040, 8128, 8280, 9246, 9528, 9950, 12294, 13668, 15008, 15456, 15864, 16392, 18492, 19900, 24120, 24840, 25954, 27320, 27336, 29850, 30240, 32760
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_11(k) is the sum of the 11th powers of the divisors of k (A013959).

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[11, n], n]==0, Print[n]], {n, 1, 40000}]
  • PARI
    isok(k) = (sigma(k, 11) % k) == 0; \\ Michel Marcus, Nov 09 2019

Extensions

a(37)-a(40) corrected and more terms added by Amiram Eldar, Nov 09 2019
Showing 1-5 of 5 results.