cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A066135 a(n) = least number m > 1 such that sigma_n(m) = k*m for some k.

Original entry on oeis.org

6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 194, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 228, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 84, 6, 10, 6, 34, 6, 10, 6, 194, 6, 10, 6
Offset: 1

Views

Author

Labos Elemer, Dec 06 2001

Keywords

Comments

a(n) <= 2p, where p = A002586(n) is the smallest prime factor of (1 + 2^n). (Proof. Since sigma_n(2p) = (1 + 2^n)(1 + p^n) and p is odd, 2p divides sigma_n(2p).) - Jonathan Sondow, Nov 23 2012

Crossrefs

Cf. A218860, A218861 (unique values and where they first occur).

Programs

  • Mathematica
    Table[m = 2; While[Mod[DivisorSigma[n, m], m] > 0, m++]; m, {n, 100}] (* T. D. Noe, Nov 23 2012 *)

Formula

Sum{d^n} = ka(n), d runs over the divisors of a(n), where k is an integer and a(n) is the smallest suitable number.

Extensions

Definition and formulas corrected by Jonathan Sondow, Nov 23 2012

A055712 Numbers k such that k | sigma_8(k).

Original entry on oeis.org

1, 84, 156, 204, 364, 476, 514, 1092, 1428, 2316, 2652, 2892, 6069, 6188, 6748, 12138, 12532, 16212, 16388, 18564, 20244, 24276, 30108, 37596, 39372, 49164, 63291, 78897, 87724, 99202, 114716, 126582, 147679, 157794, 167331
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_8(k) is the sum of the 8th powers of the divisors of k (A013956).
Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[8, n], n]==0, Print[n]], {n, 1, 10000}]
    Select[Range[170000],Divisible[DivisorSigma[8,#],#]&] (* Harvey P. Dale, Sep 15 2019 *)
  • PARI
    is(n)=sigma(n,8)%n==0 \\ Charles R Greathouse IV, Feb 04 2013

A055710 Numbers k such that k | sigma_6(k).

Original entry on oeis.org

1, 10, 26, 60, 65, 130, 150, 228, 260, 442, 650, 780, 876, 988, 1105, 1140, 1460, 1690, 1950, 2210, 2850, 2964, 3211, 3796, 4380, 4420, 4940, 5070, 5475, 5548, 6010, 6422, 8840, 9633, 10950, 11050, 11388, 11972, 12350, 12818, 13260, 13756, 14820, 16644
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_6(k) is the sum of the 6th powers of the divisors of k (A013954).
Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[6, n], n]==0, Print[n]], {n, 1, 25000}]
    Select[Range[20000],Divisible[DivisorSigma[6,#],#]&] (* Harvey P. Dale, Jun 04 2015 *)
  • PARI
    is(n)=sigma(n,6)%n==0 \\ Charles R Greathouse IV, Feb 04 2013

A055711 Numbers k such that k | sigma_7(k).

Original entry on oeis.org

1, 6, 28, 86, 120, 145, 258, 290, 435, 496, 580, 588, 672, 696, 870, 946, 1032, 1305, 1720, 1740, 2245, 2610, 2712, 2838, 3164, 3282, 3408, 3480, 3724, 3784, 4060, 4490, 5160, 5220, 6735, 6786, 6960, 7830, 8514, 8980, 9436, 9492, 9632, 9976
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_7(k) is the sum of the 7th powers of the divisors of k (A013955).
Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[7, n], n]==0, Print[n]], {n, 1, 10000}]
  • PARI
    is(n)=sigma(n,7)%n==0 \\ Charles R Greathouse IV, Feb 04 2013

A055713 Numbers k such that k | sigma_9(k).

Original entry on oeis.org

1, 6, 38, 42, 54, 114, 120, 135, 168, 190, 216, 222, 266, 270, 280, 285, 312, 342, 378, 456, 496, 540, 570, 672, 728, 760, 798, 840, 888, 945, 1026, 1064, 1080, 1140, 1330, 1512, 1554, 1560, 1710, 1782, 1806, 1862, 1890, 1962, 1976, 1995, 1998, 2160, 2166
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_9(k) is the sum of the 9th powers of the divisors of k (A013957).
Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[9, n], n]==0, Print[n]], {n, 1, 5000}]
  • PARI
    is(n)=sigma(n,9)%n==0 \\ Charles R Greathouse IV, Feb 04 2013

A066284 a(n) = A066135(4*n).

Original entry on oeis.org

34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 386, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194
Offset: 1

Views

Author

Labos Elemer, Dec 11 2001

Keywords

Comments

a(n) <= 2p, where p = A002586(4n) is the least prime factor of (1 + 16^n). (See the Comment in A066135.) - Jonathan Sondow, Nov 23 2012

Examples

			First 3 terms correspond to entries of other sequences as follows: a(1)=A046763(2), a(2)=A055712(2), a(3)=A055716(2).
From _Michael De Vlieger_, Jul 17 2017: (Start)
First position of values, with observations pertaining to values for 1 <= n <= 3000:
    Value   Position   Observations:
    --------------------------------
       34     1        All odd.
       84     2        In A047235.
      194     6        In A017593.
      228    12
      386    36
     1282    72
     1538   144
     3084   288
   147468   576
     1956   864
  1046532  1152
    24578  2304
     3252  2880
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[m = 2; While[Mod[DivisorSigma[4 n, m], m] > 0, m++]; m, {n, 66}] (* Michael De Vlieger, Jul 17 2017 *)
  • PARI
    a(n) = {n *= 4; my(m = 2); while (sigma(m, n) % m, m++); m;} \\ Michel Marcus, Oct 02 2016

Formula

a(n) = Min{x : sigma_4n(x) mod x = 0, x > 1}

A076231 Numbers k such that sigma(k)/k, sigma_3(k)/k and sigma_5(k)/k are all integers.

Original entry on oeis.org

1, 6, 120, 672, 8128, 30240, 32760, 33550336, 459818240, 1379454720, 1476304896, 8589869056, 31998395520, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608, 30823866178560, 796928461056000, 6088728021160320, 14942123276641920, 212517062615531520
Offset: 1

Views

Author

Labos Elemer, Oct 03 2002

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = !(sigma(n) % n) && !(sigma(n, 3) % n) && !(sigma(n, 5) % n); \\ Michel Marcus, Dec 26 2013

Extensions

a(16)-a(20) from Donovan Johnson, May 08 2010
a(21)-a(23) from Amiram Eldar, May 09 2024

A076233 Numbers k such that sigma(k)/k and sigma_3(k)/k are both integers.

Original entry on oeis.org

1, 6, 120, 496, 672, 8128, 30240, 32760, 523776, 23569920, 33550336, 459818240, 1379454720, 1476304896, 8589869056, 31998395520, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608, 30823866178560, 796928461056000, 6088728021160320, 14942123276641920
Offset: 1

Views

Author

Labos Elemer, Oct 04 2002

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = !(sigma(n) % n) && !(sigma(n, 3) % n); \\ Michel Marcus, Dec 26 2013

Extensions

a(19)-a(25) from Amiram Eldar, May 09 2024

A076234 Numbers k such that sigma(k)/k, sigma_3(k)/k, sigma_5(k)/k and sigma_7(k)/k are all integers.

Original entry on oeis.org

1, 6, 120, 672, 30240, 32760, 33550336, 459818240, 1379454720, 8589869056, 31998395520, 51001180160, 137438691328, 153003540480, 30823866178560, 796928461056000, 6088728021160320, 212517062615531520, 2305843008139952128, 69357059049509038080, 143573364313605309726720
Offset: 1

Views

Author

Labos Elemer, Oct 04 2002

Keywords

Crossrefs

Cf. A066289 (k divides sigma_m(k) for all odd m).

Programs

  • PARI
    isok(n) = !(sigma(n) % n) && !(sigma(n, 3) % n) && !(sigma(n, 5) % n) && !(sigma(n, 7) % n); \\ Michel Marcus, Dec 26 2013

Extensions

a(13)-a(18) from Donovan Johnson, May 08 2010
a(19)-a(21) from Amiram Eldar, May 09 2024

A055715 Numbers k such that k | sigma_11(k).

Original entry on oeis.org

1, 6, 28, 120, 402, 496, 644, 672, 920, 1366, 1608, 1932, 2680, 2760, 3417, 3966, 4098, 4623, 4975, 5152, 6210, 6834, 8040, 8128, 8280, 9246, 9528, 9950, 12294, 13668, 15008, 15456, 15864, 16392, 18492, 19900, 24120, 24840, 25954, 27320, 27336, 29850, 30240, 32760
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_11(k) is the sum of the 11th powers of the divisors of k (A013959).

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[11, n], n]==0, Print[n]], {n, 1, 40000}]
  • PARI
    isok(k) = (sigma(k, 11) % k) == 0; \\ Michel Marcus, Nov 09 2019

Extensions

a(37)-a(40) corrected and more terms added by Amiram Eldar, Nov 09 2019
Showing 1-10 of 10 results.