cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A066284 a(n) = A066135(4*n).

Original entry on oeis.org

34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 386, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194
Offset: 1

Views

Author

Labos Elemer, Dec 11 2001

Keywords

Comments

a(n) <= 2p, where p = A002586(4n) is the least prime factor of (1 + 16^n). (See the Comment in A066135.) - Jonathan Sondow, Nov 23 2012

Examples

			First 3 terms correspond to entries of other sequences as follows: a(1)=A046763(2), a(2)=A055712(2), a(3)=A055716(2).
From _Michael De Vlieger_, Jul 17 2017: (Start)
First position of values, with observations pertaining to values for 1 <= n <= 3000:
    Value   Position   Observations:
    --------------------------------
       34     1        All odd.
       84     2        In A047235.
      194     6        In A017593.
      228    12
      386    36
     1282    72
     1538   144
     3084   288
   147468   576
     1956   864
  1046532  1152
    24578  2304
     3252  2880
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[m = 2; While[Mod[DivisorSigma[4 n, m], m] > 0, m++]; m, {n, 66}] (* Michael De Vlieger, Jul 17 2017 *)
  • PARI
    a(n) = {n *= 4; my(m = 2); while (sigma(m, n) % m, m++); m;} \\ Michel Marcus, Oct 02 2016

Formula

a(n) = Min{x : sigma_4n(x) mod x = 0, x > 1}

A218860 Unique integers appearing in A066135, in order of appearance.

Original entry on oeis.org

6, 10, 34, 84, 194, 228, 386, 1282, 1538, 3084, 147468, 1956, 1046532, 24578, 3252, 4548, 638978, 5844, 28524, 26626, 229378, 44076, 24636, 59628, 117948, 18804, 75778, 83604, 30468
Offset: 1

Views

Author

T. D. Noe, Nov 24 2012

Keywords

Crossrefs

Cf. A218861 (first position of these numbers in A066135).

Programs

  • Mathematica
    f[n_]:=(m = 2; While[Mod[DivisorSigma[n, m], m] > 0, m++]; m); s={}; Do[m=f[n]; If[!MemberQ[s,m],AppendTo[s,m]],{n,1,1000}]; s (* Amiram Eldar, Dec 18 2018 after T. D. Noe at A066135 *)

Extensions

More terms from Amiram Eldar, Dec 18 2018

A218861 First position of A218860(n) in A066135.

Original entry on oeis.org

1, 2, 4, 8, 24, 48, 144, 288, 576, 1152, 2304, 3456, 4608, 9216, 11520, 16128, 18432, 20736, 25344, 29952, 36864, 39168, 43776, 52992, 59904, 66816, 85248, 99072, 108288
Offset: 1

Views

Author

T. D. Noe, Nov 24 2012

Keywords

Programs

  • Mathematica
    f[n_]:=(m = 2; While[Mod[DivisorSigma[n, m], m] > 0, m++]; m); s={}; sn={}; Do[m=f[n]; If[!MemberQ[s,m],AppendTo[s,m]; AppendTo[sn,n]],{n,1,1000}]; sn (* Amiram Eldar, Dec 18 2018 after T. D. Noe at A066135 *)

Extensions

More terms from Amiram Eldar, Dec 18 2018

A007691 Multiply-perfect numbers: n divides sigma(n).

Original entry on oeis.org

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1

Views

Author

Keywords

Comments

sigma(n)/n is in A054030.
Also numbers such that the sum of the reciprocals of the divisors is an integer. - Harvey P. Dale, Jul 24 2001
Luca's solution of problem 11090, which proves that for k>1 there are an infinite number of n such that n divides sigma_k(n), does not apply to this sequence. However, it is conjectured that this sequence is also infinite. - T. D. Noe, Nov 04 2007
Numbers k such that sigma(k) is divisible by all divisors of k, subsequence of A166070. - Jaroslav Krizek, Oct 06 2009
A017666(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2012
Bach, Miller, & Shallit show that this sequence can be recognized in polynomial time with arbitrarily small error by a probabilistic Turing machine; that is, this sequence is in BPP. - Charles R Greathouse IV, Jun 21 2013
Conjecture: If n is such that 2^n-1 is in A066175 then a(n) is a triangular number. - Ivan N. Ianakiev, Aug 26 2013
Conjecture: Every multiply-perfect number is practical (A005153). I've verified this conjecture for the first 5261 terms with abundancy > 2 using Achim Flammenkamp's data. The even perfect numbers are easily shown to be practical, but every practical number > 1 is even, so a weak form says every even multiply-perfect number is practical. - Jaycob Coleman, Oct 15 2013
Numbers such that A054024(n) = 0. - Michel Marcus, Nov 16 2013
Numbers n such that k(n) = A229110(n) = antisigma(n) mod n = A024816(n) mod n = A000217(n) mod n = (n(n+1)/2) mod n = A142150(n). k(n) = n/2 for even n; k(n) = 0 for odd n (for number 1 and eventually odd multiply-perfect numbers n > 1). - Jaroslav Krizek, May 28 2014
The only terms m > 1 of this sequence that are not in A145551 are m for which sigma(m)/m is not a divisor of m. Conjecture: after 1, A323653 lists all such m (and no other numbers). - Antti Karttunen, Mar 19 2021

Examples

			120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.

Crossrefs

Complement is A054027. Cf. A000203, A054030.
Cf. A000396, A005820, A027687, A046060, A046061, for subsequences of terms with quotient sigma(n)/n = 2..6.
Subsequence of the following sequences: A011775, A071707, A083865, A089748 (after the initial 1), A102783, A166070, A175200, A225110, A226476, A237719, A245774, A246454, A259307, A263928, A282775, A323652, A336745, A340864. Also conjectured to be a subsequence of A005153, of A307740, and after 1 also of A295078.
Various number-theoretical functions applied to these numbers: A088843 [tau], A098203 [phi], A098204 [gcd(a(n),phi(a(n)))], A134665 [2-adic valuation], A307741 [sigma], A308423 [product of divisors], A320024 [the odd part], A134740 [omega], A342658 [bigomega], A342659 [smallest prime not dividing], A342660 [largest prime divisor].
Positions of ones in A017666, A019294, A094701, A227470, of zeros in A054024, A082901, A173438, A272008, A318996, A326194, A341524. Fixed points of A009194.
Cf. A069926, A330746 (left inverses, when applied to a(n) give n).
Cf. (other related sequences) A007539, A066135, A066961, A093034, A094467, A134639, A145551, A019278, A194771 [= 2*a(n)], A219545, A229110, A262432, A335830, A336849, A341608.

Programs

  • Haskell
    a007691 n = a007691_list !! (n-1)
    a007691_list = filter ((== 1) . a017666) [1..]
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Mathematica
    Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *)
    Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]]
    (* Third program: *)
    Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
  • PARI
    for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return sigma(n, 1)%n == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021

Extensions

More terms from Jud McCranie and then from David W. Wilson.
Incorrect comment removed and the crossrefs-section reorganized by Antti Karttunen, Mar 20 2021

A066289 Numbers k such that k divides DivisorSigma(2*j-1, k) for all j; i.e., all odd-power-sums of divisors of k are divisible by k.

Original entry on oeis.org

1, 6, 120, 672, 30240, 32760, 31998395520, 796928461056000, 212517062615531520, 680489641226538823680000, 13297004660164711617331200000, 1534736870451951230417633280000, 6070066569710805693016339910206758877366156437562171488352958895095808000000000
Offset: 1

Views

Author

Labos Elemer, Dec 12 2001

Keywords

Comments

Tested for each k and j < 200. Otherwise the proof for all j seems laborious, since the number of divisors of terms of sequence rapidly increases: {1, 4, 16, 24, 96, 96, 2304, ...}.
Tested for each k and j <= 1000. - Thomas Baruchel, Oct 10 2003
The given terms have been tested for all j. - Don Reble, Nov 03 2003
This is a proper subset of the multiply perfect numbers A007691. E.g., 8128 from A007691 is not here because its remainder at Sigma[odd,8128]/8128 division is 0 or 896 depending on odd exponent.

Crossrefs

Formula

DivisorSigma(2*j-1, k)/k is an integer for all j = 1, 2, 3, ..., 200, ...

Extensions

The following numbers belong to the sequence, but there may be missing terms in between: 796928461056000 (also belongs to A046060); 212517062615531520 (also belongs to A046060); 680489641226538823680000 (also belongs to A046061); 13297004660164711617331200000 (also belongs to A046061). - Thomas Baruchel, Oct 10 2003
Extended to 13 confirmed terms by Don Reble, Nov 04 2003. There is a question whether there are other members below a(13). However, there are none in Achim's list of multiperfect numbers (see A007691); Richard C. Schroeppel has suggested that that list is complete to 10^70 - if so, a(1..12) are correct; as for a(13), Rich says there's only "an epsilon chance that some undiscovered MPFN lies in the gap." So it is very likely to be correct. - Don Reble

A066292 Numbers n such that n divides sigma_(2^k)(n), the sum of the 2^k powers of the divisors of n, for all k>1.

Original entry on oeis.org

1, 84, 156, 364, 1092, 435708, 986076, 1118480, 1441188, 1674036, 2446668, 2597868, 3108924, 3875508, 4150692, 5537196, 6066396, 6686316, 13729212, 14639436, 18735444, 23307732, 27092052, 31806684, 58266468, 69728724
Offset: 1

Views

Author

Labos Elemer, Dec 12 2001

Keywords

Comments

Let d be the vector of divisors of n. The sequence d^(2^k) mod n has some period p. Thus if n divides sigma_(2^k)(n) for one period, then n divides sigma_(2^k)(n) for all k. For these n, the first period ends for k < 158. Hence it is easy to verify divisibility for all k. - T. D. Noe, Apr 11 2006

Examples

			n=84 is here because 84 divides each one of sigma_4(n)=53771172, sigma_8(n)=2488859101224132, sigma_16(n)=6144339637187846520573009496452, etc.
		

Crossrefs

Programs

  • Mathematica
    t={}; Do[If[Mod[DivisorSigma[4,n],n]==0, AppendTo[t,n]], {n,10^8}]; Do[t=Select[t,Mod[DivisorSigma[2^k,# ],# ]==0&],{k,3,20}]; t (* T. D. Noe, Apr 11 2006 *)

Extensions

Edited by T. D. Noe, Apr 11 2006

A199167 Smallest number k such that the sum of the n-th powers of the divisors of k is divisible by n.

Original entry on oeis.org

1, 3, 2, 15, 8, 12, 4, 105, 2, 3, 43, 60, 9, 12, 8, 945, 67, 300, 37, 240, 5, 48, 137, 420, 8, 5, 2, 60, 173, 12, 16, 10395, 86, 13, 76, 2100, 73, 147, 8, 1680, 163, 4800, 257, 240, 8, 3072, 281, 3780, 4, 3, 101, 60, 211, 14700, 8, 420, 32, 17, 353, 8400, 169
Offset: 1

Views

Author

Michel Lagneau, Nov 03 2011

Keywords

Examples

			a(6) = 12 because the divisors of 12 are 1, 2, 3, 4, 6, 12 and 1^6 + 2^6 + 3^6 + 4^6 + 6^6 + 12^6 =  3037530 = 6*506255.
		

Crossrefs

Cf. A066135.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local k;
          for k while irem (add (d &^n mod n, d=divisors(k)), n)<>0
          do od; k
        end:
    seq (a(n), n=1..63);
  • Mathematica
    snk[n_]:=Module[{k=1},While[!Divisible[DivisorSigma[n,k],n],k++];k]; Array[ snk,70] (* Harvey P. Dale, Jun 07 2016 *)
  • PARI
    a(n)=my(k);while(sigma(k++,n)%n,);k \\ Charles R Greathouse IV, Nov 03 2011

A066290 Numbers m such that DivisorSigma(4*k-2, m) mod m = 0 holds presumably for all k; that is, (4k-2)-power-sums of divisors of m are divisible by m for all k.

Original entry on oeis.org

1, 10, 60, 65, 130, 150, 260, 780, 1105, 2210, 4420, 8840, 13260, 19720, 20737, 32045, 41474, 55250, 64090, 82948, 103685, 128180, 207370, 207553, 221000, 248844, 256360, 295800, 331500, 352529, 384540, 414740, 415106, 450840, 512720, 705058, 829480, 830212
Offset: 1

Views

Author

Labos Elemer, Dec 12 2001

Keywords

Examples

			Tested for each m and k < 200. Proof for several values of k seems not so tedious because the number of divisors of the terms of the sequence is not so large: {1, 4, 12, 4, 8, 12, 12, 24, 8, 16, 24, 32, 48, 32, 4, 16, 8, 32, 32, 12, 8, 48, 16, 8, 64, 24, 64, 96, 96, 8, 96, 24, 16, 96, 80, 16, 32, 24}.
		

Crossrefs

Programs

  • Mathematica
    lastSeq = {}; max = 100; While[seq = Reap[For[n = 1, n < 10^6, n++, If[AllTrue[Range[max], Mod[DivisorSigma[4 # - 2, n], n] == 0&], Print[n]; Sow[n]]]][[2, 1]]; seq != lastSeq, lastSeq = seq; max = max + 100; Print["max = ", max]]; seq (* Jean-François Alcover, Oct 02 2016 *)

Formula

DivisorSigma(4k-2, m)/m is an integer for k = 1, 2, 3, .., 200, ...

Extensions

More terms from Jean-François Alcover, Oct 02 2016

A219547 Numbers k such that 2 times the least prime factor of 2^k + 1 is not the least m > 1 that divides sigma_k(m).

Original entry on oeis.org

8, 16, 32, 40, 48, 56, 64, 80, 88, 96, 104, 112, 128, 136, 152, 160, 176, 184, 192, 200, 208, 224, 232, 240, 248, 256, 272, 280, 296, 304, 320, 328, 336, 344, 352, 368, 376, 384, 392, 400, 416, 424, 440, 448, 464, 472, 480, 488, 496
Offset: 1

Views

Author

Jonathan Sondow, Nov 24 2012

Keywords

Comments

Numbers k with 2*A002586(k) unequal to A066135(k).
A066135(n) <= 2*A002586(n) for all n (see Comments in A066135). Sequence gives those k for which A066135(k) < 2*A002586(k).
The corresponding least prime factors of 2^k + 1 are A219548.
See A007691 for references, links, and additional comments.

Examples

			A066135(n) = 6,10,6,34,6,10,6 = 2*A002586(n) for n = 1,2,3,4,5,6,7, and A066135(8) = 84 < 2*257 = 2*A002586(8), so a(1) = 8.
		

Crossrefs

Formula

A066135(a(n)) < 2*A002586(a(n)).
A002586(a(n)) = A219548(n).

A066291 Numbers m such that DivisorSigma(8*k-4, m) mod m = 0 holds presumably for all k; that is, (8*k-4)-power-sums of divisors of m are divisible by m for all k.

Original entry on oeis.org

1, 34, 492, 5617, 11234, 22468, 67404, 190978, 709937, 763912, 1419874, 2839748, 5073996, 5446841, 7914353, 8519244, 10893682, 11548552, 15828706, 17126233, 21787364, 31657412, 34252466, 43574728, 57928121, 63314824, 65362092, 68504932, 73084632, 94972236
Offset: 1

Views

Author

Labos Elemer, Dec 12 2001

Keywords

Examples

			Tested for each m with k < 200.
Tested for each m with k < 500. - _Sean A. Irvine_, Oct 07 2023
		

Crossrefs

Programs

  • Mathematica
    Table[Union[Table[ IntegerQ[DivisorSigma[8*k-4, Part[t, m]]/Part[t, m]], {k, 1, 200}]], {m, 1, Length[t]}]; where t denotes the table of sequence.

Formula

DivisorSigma(8*k-4, m)/m is an integer for k = 1, 2, 3, ..., 200, ...

Extensions

More terms from Sean A. Irvine, Oct 07 2023
Showing 1-10 of 10 results.