cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A055807 Triangle T read by rows: T(i,j) = R(i-j,j), where R(i,0) = 1 for i >= 0, R(0,j) = 0 for j >= 1, and R(i,j) = Sum_{h=0..i-1, k=0..j} R(h,k) for i >= 1 and j >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 4, 1, 0, 1, 15, 12, 5, 1, 0, 1, 31, 32, 18, 6, 1, 0, 1, 63, 80, 56, 25, 7, 1, 0, 1, 127, 192, 160, 88, 33, 8, 1, 0, 1, 255, 448, 432, 280, 129, 42, 9, 1, 0, 1, 511, 1024, 1120, 832, 450, 180, 52, 10, 1, 0, 1, 1023
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

Formatted as a triangular array, it is [1, 0, 1, 1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, -1, 1, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 05 2006
The square array (R(n,k): n,k >= 0) referred to in the name of the sequence is actually A050143. - Petros Hadjicostas, Feb 13 2021

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,   0;
  1,   1,   0;
  1,   3,   1,   0;
  1,   7,   4,   1,   0;
  1,  15,  12,   5,   1,   0;
  1,  31,  32,  18,   6,   1,  0;
  1,  63,  80,  56,  25,   7,  1, 0;
  1, 127, 192, 160,  88,  33,  8, 1, 0;
  1, 255, 448, 432, 280, 129, 42, 9, 1, 0;
  ...
Florez et al. (2019) give the triangle in this form:
    1,    0,    0,   0,   0,   0,  0,  0, 0, ...
    3,    1,    0,   0,   0,   0,  0,  0, 0, ...
    7,    4,    1,   0,   0,   0,  0,  0, 0, ...
   15,   12,    5,   1,   0,   0,  0,  0, 0, ...
   31,   32,   18,   6,   1,   0,  0,  0, 0, ...
   63,   80,   56,  25,   7,   1,  0,  0, 0, ...
  127,  192,  160,  88,  33,   8,  1,  0, 0, ...
  255,  448,  432, 280, 129,  42,  9,  1, 0, ...
  511, 1024, 1120, 832, 450, 180, 52, 10, 1, ...
  ...
		

Crossrefs

Rows sums: A001519 (odd-indexed Fibonacci numbers).

Programs

  • GAP
    T:= function(i,j)
        if j=0 then return 1;
        elif i=0 then return 0;
        else return Sum([0..i-1], h-> Sum([0..j], m-> T(h,m) ));
        fi; end;
    Flat(List([0..12], n-> List([0..n], k-> T(n-k,k) ))); # G. C. Greubel, Jan 23 2020
  • Magma
    function T(i,j)
      if j eq 0 then return 1;
      elif i eq 0 then return 0;
      else return (&+[(&+[T(h,m): m in [0..j]]): h in [0..i-1]]);
      end if; return T; end function;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 23 2020
    
  • Maple
    T:= proc(i, j) option remember;
          if j=0 then 1
        elif i=0 then 0
        else add(add(T(h,m), m=0..j), h=0..i-1)
          fi; end:
    seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Jan 23 2020
  • Mathematica
    T[i_, j_]:= T[i, j]= If[j==0, 1, If[i==0, 0, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 23 2020 *)
  • PARI
    T(i,j) = if(j==0, 1, if(i==0, 0, sum(h=0,i-1, sum(m=0,j, T(h,m) ))));
    for(n=0,12, for(k=0, n, print1(T(n-k,k), ", "))) \\ G. C. Greubel, Jan 23 2020
    
  • Sage
    @CachedFunction
    def T(i, j):
        if j==0: return 1
        elif i==0: return 0
        else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1))
    [[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 23 2020
    

Formula

T(2*n,n) = A050146(n).
G.f.: (1-2*x)*(1-x*y)/((1-x)*(1-x*y-2*x+x^2*y)). - R. J. Mathar, Aug 11 2015
From Petros Hadjicostas, Feb 13 2021: (Start)
T(n,k) = A050143(n-k, k) for 0 <= k <= n.
T(n,k) = (n-k)*hypergeom([-n + k + 1, k], [2], -1) = Sum_{s=1..n-k} binomial(n-k,s)*binomial(s+k-2,k-1) for 1 <= k <= n.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 2 <= k <= n-1 with initial conditions T(n,0) = 1 for n >= 0, T(n,n) = 0 for n >= 1, and T(n,1) = 2^(n-1) - 1 for n >= 2. (End)

A055809 a(n) = T(n,n-4), array T as in A055807.

Original entry on oeis.org

1, 15, 32, 56, 88, 129, 180, 242, 316, 403, 504, 620, 752, 901, 1068, 1254, 1460, 1687, 1936, 2208, 2504, 2825, 3172, 3546, 3948, 4379, 4840, 5332, 5856, 6413, 7004, 7630, 8292, 8991, 9728, 10504, 11320, 12177, 13076
Offset: 4

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

If Y_i (i=1,2,3,4) are 2-blocks of an n-set X then, for n>=8, a(n-2) is the number of (n-3)-subsets of X intersecting each Y_i (i=1,2,3,4). - Milan Janjic, Nov 09 2007

Crossrefs

Programs

  • GAP
    Concatenation([1], List([5..50], n-> n*(n^2 +3*n -22)/6 )); # G. C. Greubel, Jan 23 2020
  • Magma
    [1] cat [n*(n^2 +3*n -22)/6: n in [5..50]]; // G. C. Greubel, Jan 23 2020
    
  • Maple
    seq( `if`(n=4, 1, n*(n^2 +3*n -22)/6), n=4..50); # G. C. Greubel, Jan 23 2020
  • Mathematica
    f[n_]:=Sum[i+i^2-8,{i,1,n}]/2;Table[f[n],{n,5,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2010 *)
    Table[If[n==4, 1, n*(n^2 +3*n -22)/6], {n,4,50}] (* G. C. Greubel, Jan 23 2020 *)
  • PARI
    Vec(x^4*(1 + 11*x - 22*x^2 + 14*x^3 - 3*x^4)/(1-x)^4 + O(x^50)) \\ Michel Marcus, Jan 10 2015
    
  • PARI
    vector(50, n, my(m=n+3); if(m==4, 1, m*(m^2 +3*m -22)/6)) \\ G. C. Greubel, Jan 23 2020
    
  • Sage
    [1]+[n*(n^2 +3*n -22)/6 for n in (5..50)] # G. C. Greubel, Jan 23 2020
    

Formula

For n>4, a(n) = n*(n^2 + 3*n - 22)/6.
G.f.: x^4*(1 + 11*x - 22*x^2 + 14*x^3 - 3*x^4)/(1-x)^4. - Colin Barker, Feb 22 2012
E.g.f.: x*(72 +48*x +8*x^2 -3*x^2 + (-72 +24*x +4*x^2)*exp(x))/24. - G. C. Greubel, Jan 23 2020

A055810 a(n) = T(n,n-5), array T as in A055807.

Original entry on oeis.org

1, 31, 80, 160, 280, 450, 681, 985, 1375, 1865, 2470, 3206, 4090, 5140, 6375, 7815, 9481, 11395, 13580, 16060, 18860, 22006, 25525, 29445, 33795, 38605, 43906, 49730, 56110, 63080, 70675, 78931, 87885, 97575
Offset: 5

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([6..40], n-> (240 -54*n -49*n^2 +6*n^3 +n^4)/24 )); # G. C. Greubel, Jan 23 2020
  • Magma
    [1] cat [(240 -54*n -49*n^2 +6*n^3 +n^4)/24: n in [6..40]]; // G. C. Greubel, Jan 23 2020
    
  • Maple
    seq( `if`(n=5, 1, (240 -54*n -49*n^2 +6*n^3 +n^4)/24), n=5..40); # G. C. Greubel, Jan 23 2020
  • Mathematica
    Table[If[n==5, 1, (240 -54*n -49*n^2 +6*n^3 +n^4)/24], {n,5,40}] (* G. C. Greubel, Jan 23 2020 *)
  • PARI
    vector(40, n, my(m=n+4); if(m==5, 1, (240 -54*m -49*m^2 +6*m^3 +m^4)/24)) \\ G. C. Greubel, Jan 23 2020
    
  • Sage
    [1]+[(240 -54*n -49*n^2 +6*n^3 +n^4)/24 for n in (6..40)] # G. C. Greubel, Jan 23 2020
    

Formula

G.f.: x^5*(1 +26*x -65*x^2 +60*x^3 -25*x^4 +4*x^5)/(1-x)^5. - Colin Barker, Feb 22 2012
From G. C. Greubel, Jan 23 2020: (Start)
a(n) = (240 -54*n -49*n^2 +6*n^3 +n^4)/24 for n > 5, with a(5) = 1.
E.g.f.: (-1200 -720*x +100*x^3 +25*x^4 -4*x^5 + (1200 -480*x -120*x^2 +60*x^3 +5*x^4)*exp(x))/120. (End)

A055811 a(n) = T(n,n-6), array T as in A055807.

Original entry on oeis.org

1, 63, 192, 432, 832, 1452, 2364, 3653, 5418, 7773, 10848, 14790, 19764, 25954, 33564, 42819, 53966, 67275, 83040, 101580, 123240, 148392, 177436, 210801, 248946, 292361, 341568, 397122, 459612, 529662
Offset: 6

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([7..30], n-> n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120 )); # G. C. Greubel, Jan 23 2020
  • Magma
    [1] cat [n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120: n in [7.30]]; // G. C. Greubel, Jan 23 2020
    
  • Maple
    seq( `if`(n=6, 1, n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120), n=6..30); # G. C. Greubel, Jan 23 2020
  • Mathematica
    Table[If[n==6,1, n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120], {n,6,30}] (* G. C. Greubel, Jan 23 2020 *)
  • PARI
    vector(25, n, my(m=n+5); if(m==6,1, m*(1584 -310*m -85*m^2 +10*m^3 +m^4)/120) ) \\ G. C. Greubel, Jan 23 2020
    
  • Sage
    [1]+[n*(1584 -310*n -85*n^2 +10*n^3 +n^4)/120 for n in (7..30)] # G. C. Greubel, Jan 23 2020
    

Formula

From G. C. Greubel, Jan 23 2020: (Start)
a(n) = n*(1584 - 310*n - 85*n^2 + 10*n^3 + n^4)/120 for n > 6, with a(6) = 1.
G.f.: x^6*(1 + 57*x - 171*x^2 + 205*x^3 - 125*x^4 + 39*x^5 - 5*x^6)/(1-x)^6.
E.g.f.: (-1)*x*(7200 +4320*x +720*x^2 -120*x^3 -54*x^4 +5*x^5 - (7200 -2880*x + 120*x^3 + 6*x^4)*exp(x))/720. (End)

A055815 a(n) = T(2*n+3,n), array T as in A055807.

Original entry on oeis.org

1, 15, 80, 432, 2352, 12896, 71136, 394400, 2196128, 12273648, 68811184, 386838480, 2179890000, 12309739968, 69641542848, 394643939904, 2239678552640, 12727572969680, 72415319422992, 412470467298032
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Apart from the offset the same as A050149. - R. J. Mathar, Oct 13 2008

Programs

  • Maple
    T:= proc(i, j) option remember;
          if j=0 then 1
        elif i=0 then 0
        else add(add(T(h,m), m=0..j), h=0..i-1)
      fi; end:
    seq(T(n+3, n), n=0..20); # G. C. Greubel, Jan 23 2020
  • Mathematica
    T[i_, j_]:= T[i, j]= If[j==0, 1, If[i==0, 0, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]]; Table[T[n+3, n], {n,0,20}] (* G. C. Greubel, Jan 23 2020 *)
  • Sage
    @CachedFunction
    def T(i, j):
        if (j==0): return 1
        elif (i==0): return 0
        else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1))
    [T(n+3, n) for n in (0..20)] # G. C. Greubel, Jan 23 2020

Formula

a(n) = (n+3)*hypergeom([-n-2, n], [2], -1) = Sum_{s=1..n+3} binomial(n+3,s) * binomial(s+n-2,n-1) for n >= 1. - Petros Hadjicostas, Feb 13 2021

A055816 a(n) = T(2*n+4,n), array T as in A055807.

Original entry on oeis.org

1, 31, 192, 1120, 6400, 36288, 205184, 1159488, 6554880, 37088480, 210075712, 1191254688, 6762782208, 38434677120, 218663320320, 1245254943872, 7098135387648, 40495661150112, 231220652273600, 1321222104326880
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(i, j) option remember;
          if j=0 then 1
        elif i=0 then 0
        else add(add(T(h,m), m=0..j), h=0..i-1)
      fi; end:
    seq(T(n+4, n), n=0..20); # G. C. Greubel, Jan 23 2020
  • Mathematica
    T[i_, j_]:= T[i, j]= If[j==0, 1, If[i==0, 0, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]]; Table[T[n+4, n], {n,0,20}] (* G. C. Greubel, Jan 23 2020 *)
  • Sage
    @CachedFunction
    def T(i, j):
        if (j==0): return 1
        elif (i==0): return 0
        else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1))
    [T(n+4, n) for n in (0..20)] # G. C. Greubel, Jan 23 2020

Formula

a(n) = (n+4)*hypergeom([-n -3, n], [2], -1) = Sum_{s=1..n+4} binomial(n+4,s)*binomial(s+n-2,n-1) for n >= 1. - Petros Hadjicostas, Feb 13 2021
Showing 1-6 of 6 results.