A055818 Triangle T read by rows: T(i,j) = R(i-j,j), where R(i,0) = R(0,i) = 1 for i >= 0, R(i,j) = Sum_{h=0..i-1} Sum_{m=0..j} R(h,m) for i >= 1, j >= 1.
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 11, 9, 4, 1, 1, 23, 24, 14, 5, 1, 1, 47, 60, 43, 20, 6, 1, 1, 95, 144, 122, 69, 27, 7, 1, 1, 191, 336, 328, 217, 103, 35, 8, 1, 1, 383, 768, 848, 640, 354, 146, 44, 9, 1, 1, 767, 1728, 2128, 1800, 1131, 543, 199, 54, 10, 1
Offset: 0
Examples
Rows begins as: 1; 1, 1; 1, 2, 1; 1, 5, 3, 1; 1, 11, 9, 4, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 3B.
Crossrefs
Programs
-
GAP
T:= function(i,j) if i=0 or j=0 then return 1; else return Sum([0..i-1], h-> Sum([0..j], m-> T(h,m) )); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n-k,k) ))); # G. C. Greubel, Jan 21 2020
-
Magma
function T(i,j) if i eq 0 or j eq 0 then return 1; else return (&+[(&+[T(h,m): m in [0..j]]): h in [0..i-1]]); end if; return T; end function; [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 21 2020
-
Maple
T:= proc(i, j) option remember; if i=0 or j=0 then 1 else add(add(T(h,m), m=0..j), h=0..i-1) fi; end: seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Jan 21 2020
-
Mathematica
T[i_, j_]:= T[i, j]= If[i==0 || j==0, 1, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 21 2020 *)
-
PARI
T(i,j) = if(i==0 || j==0, 1, sum(h=0,i-1, sum(m=0,j, T(h,m) ))); for(n=0,12, for(k=0, n, print1(T(n-k,k), ", "))) \\ G. C. Greubel, Jan 21 2020
-
Sage
@CachedFunction def T(i, j): if (i==0 or j==0): return 1 else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1)) [[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 21 2020
Comments