A056116 a(n) = 121*12^(n-2), a(0)=1, a(1)=10.
1, 10, 121, 1452, 17424, 209088, 2509056, 30108672, 361304064, 4335648768, 52027785216, 624333422592, 7492001071104, 89904012853248, 1078848154238976, 12946177850867712, 155354134210412544
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (12).
Programs
-
GAP
concatenation([1,10], List([2..20], n-> 121*12^(n-2) )); # G. C. Greubel, Jan 18 2020
-
Magma
[1,10] cat [121*12^(n-2): n in [2..20]]; // G. C. Greubel, Jan 18 2020
-
Maple
1,10, seq( 121*12^(n-2), n=2..20); # G. C. Greubel, Jan 18 2020
-
Mathematica
LinearRecurrence[{12},{1,10,121},20] (* Harvey P. Dale, Oct 20 2015 *)
-
PARI
concat([1, 10], vector(20, n, 121*12^(n-1) )) \\ G. C. Greubel, Jan 18 2020
-
Sage
[1,10]+[121*12^(n-2) for n in (2..20)] # G. C. Greubel, Jan 18 2020
Formula
a(n) = 12*a(n-1) + (-1)^n*C(2, 2-n).
G.f.: (1-x)^2/(1-12*x).
a(n) = Sum_{k=0..n} A201780(n,k)*10^k. - Philippe Deléham, Dec 05 2011
E.g.f.: (23 - 12*x + 121*exp(12*x))/144. - G. C. Greubel, Jan 18 2020
Extensions
More terms from James Sellers, Jul 04 2000
Comments