cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056125 a(n) = (5*n + 4)*binomial(n+7,7)/4.

Original entry on oeis.org

1, 18, 126, 570, 1980, 5742, 14586, 33462, 70785, 140140, 262548, 469404, 806208, 1337220, 2151180, 3368244, 5148297, 7700814, 11296450, 16280550, 23088780, 32265090, 44482230, 60565050, 81516825, 108548856, 143113608, 186941656
Offset: 0

Views

Author

Barry E. Williams, Jul 07 2000

Keywords

Crossrefs

Cf. A052254.
Cf. A093645 ((10, 1) Pascal, column m=8).
Partial sums of A052254.

Programs

  • GAP
    List([0..30], n-> (5*n+4)*Binomial(n+7,7)/4 ); # G. C. Greubel, Jan 19 2020
  • Magma
    [(5*n+4)*Binomial(n+7,7)/4: n in [0..30]]; // G. C. Greubel, Jan 19 2020
    
  • Maple
    seq( (5*n+4)*binomial(n+7,7)/4, n=0..30); # G. C. Greubel, Jan 19 2020
  • Mathematica
    Table[((5n+4)Binomial[n+7,7])/4,{n,0,30}] (* or *) LinearRecurrence[{9,-36,84, -126,126,-84,36,-9,1},{1,18,126,570,1980,5742,14586,33462,70785},30] (* Harvey P. Dale, Jan 18 2013 *)
  • PARI
    vector(31, n, (5*n-1)*binomial(n+6,7)/4 ) \\ G. C. Greubel, Jan 19 2020
    
  • Sage
    [(5*n+4)*binomial(n+7,7)/4 for n in (0..30)] # G. C. Greubel, Jan 19 2020
    

Formula

G.f.: (1+9*x)/(1-x)^9.
a(0)=1, a(1)=18, a(2)=126, a(3)=570, a(4)=1980, a(5)=5742, a(6)=14586, a(7)=33462, a(8)=70785, a(n) = 9*a(n-1) -36*a(n-2) +84*a(n-3) -126*a(n-4) + 126*a(n-5) -84*a(n-6) +36*a(n-7) -9*a(n-8) +a(n-9). - Harvey P. Dale, Jan 18 2013
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = 10*binomial(n+8,8) - 9*binomial(n+7,7).
E.g.f.: (20160 + 342720*x + 917280*x^2 + 823200*x^3 + 323400*x^4 + 62328*x^5 + 6076*x^6 + 284*x^7 + 5*x^8)*exp(x)/20160. (End)