cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056128 a(n) = (9*n + 11)*binomial(n+10, 10)/11.

Original entry on oeis.org

1, 20, 174, 988, 4277, 15288, 47320, 130832, 330174, 772616, 1696396, 3527160, 6995534, 13312768, 24426552, 43385360, 74847175, 125777340, 206390730, 331405620, 521690715, 806403000, 1225732560, 1834391520, 2706007980, 3938612496, 5661434520, 8043259504
Offset: 0

Views

Author

Barry E. Williams, Jul 08 2000

Keywords

Crossrefs

Cf. A056003.

Programs

  • GAP
    List([0..30], n-> (9*n+11)*Binomial(n+10,10)/11 ); # G. C. Greubel, Jan 18 2020
  • Magma
    [((9*n+11)*Binomial(n+10,10))/11: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
    
  • Maple
    seq( (9*n+11)*binomial(n+10, 10)/11, n=0..30); # G. C. Greubel, Jan 18 2020
  • Mathematica
    CoefficientList[Series[(1+8x)/(1-x)^12, {x,0,40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
    LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1}, {1,20,174, 988,4277,15288,47320,130832,330174,772616,1696396,3527160}, 40] (* Harvey P. Dale, Jan 14 2015 *)
  • PARI
    vector(31, n, (9*n-2)*binomial(n+9,10)/11 ) \\ G. C. Greubel, Jan 18 2020
    
  • Sage
    [(9*n+11)*binomial(n+10,10)/11 for n in (0..30)] # G. C. Greubel, Jan 18 2020
    

Formula

a(n) = (9*n + 11)*binomial(n+10, 10)/11.
G.f.: (1+8*x)/(1-x)^12.
a(n) = 9*binomial(n+11,11) - 8*binomial(n+10,10). - G. C. Greubel, Jan 18 2020

Extensions

New name, from existing formula, added by G. C. Greubel, Jan 18 2020