A056128 a(n) = (9*n + 11)*binomial(n+10, 10)/11.
1, 20, 174, 988, 4277, 15288, 47320, 130832, 330174, 772616, 1696396, 3527160, 6995534, 13312768, 24426552, 43385360, 74847175, 125777340, 206390730, 331405620, 521690715, 806403000, 1225732560, 1834391520, 2706007980, 3938612496, 5661434520, 8043259504
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Crossrefs
Cf. A056003.
Programs
-
GAP
List([0..30], n-> (9*n+11)*Binomial(n+10,10)/11 ); # G. C. Greubel, Jan 18 2020
-
Magma
[((9*n+11)*Binomial(n+10,10))/11: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
-
Maple
seq( (9*n+11)*binomial(n+10, 10)/11, n=0..30); # G. C. Greubel, Jan 18 2020
-
Mathematica
CoefficientList[Series[(1+8x)/(1-x)^12, {x,0,40}], x] (* Vincenzo Librandi, Jul 30 2014 *) LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1}, {1,20,174, 988,4277,15288,47320,130832,330174,772616,1696396,3527160}, 40] (* Harvey P. Dale, Jan 14 2015 *)
-
PARI
vector(31, n, (9*n-2)*binomial(n+9,10)/11 ) \\ G. C. Greubel, Jan 18 2020
-
Sage
[(9*n+11)*binomial(n+10,10)/11 for n in (0..30)] # G. C. Greubel, Jan 18 2020
Formula
a(n) = (9*n + 11)*binomial(n+10, 10)/11.
G.f.: (1+8*x)/(1-x)^12.
a(n) = 9*binomial(n+11,11) - 8*binomial(n+10,10). - G. C. Greubel, Jan 18 2020
Extensions
New name, from existing formula, added by G. C. Greubel, Jan 18 2020