A056170 Number of non-unitary prime divisors of n.
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, 0, 1, 0
Offset: 1
Links
Crossrefs
Programs
-
Haskell
a056170 = length . filter (> 1) . a124010_row -- Reinhard Zumkeller, Dec 29 2012
-
Magma
A056170:=func
; [A056170(n):n in[1..105]]; // Jason Kimberley, Jan 22 2017 -
Maple
A056170 := n -> nops(select(t -> (t[2]>1), ifactors(n)[2])); seq(A056170(n),n=1..100); # Robert Israel, Jun 03 2014
-
Mathematica
a[n_] := Count[FactorInteger[n], {, k /; k > 1}]; Table[a[n], {n, 105}] (* Jean-François Alcover, Mar 23 2011 *) Table[Count[FactorInteger[n][[All,2]],?(#>1&)],{n,110}] (* _Harvey P. Dale, Jul 08 2019 *)
-
PARI
a(n)=my(f=factor(n)[,2]); sum(i=1,#f,f[i]>1) \\ Charles R Greathouse IV, May 18 2015
-
Python
from sympy import factorint def a(n): f = factorint(n) return sum([1 for i in f if f[i]!=1]) # Indranil Ghosh, Apr 24 2017
Formula
Additive with a(p^e) = 0 if e = 1, 1 otherwise.
G.f.: Sum_{k>=1} x^(prime(k)^2)/(1 - x^(prime(k)^2)). - Ilya Gutkovskiy, Jan 01 2017
a(n) = log_2(A000005(A071773(n))). - observed by Velin Yanev, Aug 20 2017, confirmed by Antti Karttunen, Nov 28 2017
From Antti Karttunen, Nov 28 2017: (Start)
a(n) = omega(A000188(n)) = omega(A003557(n)) = omega(A057521(n)) = omega(A295666(n)), where omega = A001221.
For all n >= 1 it holds that:
a(n) >= A162641(n).
(End)
Dirichlet g.f.: primezeta(2s)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Sum_{p prime} 1/p^2 = 0.452247... (A085548). - Amiram Eldar, Nov 01 2020
Extensions
Minor edits by Franklin T. Adams-Watters, Mar 23 2011
Comments