A056221 Image of primes (A000040) under "little Hankel" transform that sends [c_0, c_1, ...] to [d_0, d_1, ...] where d_n = c_n^2 - c_{n+1}*c_{n-1}.
-1, 4, -6, 30, -18, 42, -30, -22, 128, -112, 98, 90, -78, -70, 36, 248, -232, 158, 150, -280, 182, -142, -130, 420, 210, -198, 222, -210, -1074, 1326, -238, 560, -1092, 1212, -592, 36, 350, -310, 36, 728, -1428, 1548, -378, 402, -1966, 144, 1832, 462, -450, -442
Offset: 1
Keywords
Links
- Stefano Spezia, Table of n, a(n) for n = 1..10000
- L. Panaitopol, On the sequence p(n)^2=p(n-1)*p(n+1), J. Inequal. Pure Appl. Math., Volume 3, Issue 4, Article 53, 2002.
Programs
-
Maple
A056221 := proc(n) ithprime(n+1)^2-ithprime(n)*ithprime(n+2) ; end proc: seq(A056221(n),n=1..10) ; # R. J. Mathar, Dec 10 2011
-
Mathematica
a[n_]:=Prime[n+1]^2-Prime[n]Prime[n+2]; Array[a,50] (* Stefano Spezia, Jul 15 2024 *)
Formula
a(n) = determinant of matrix
| prime(n+1) prime(n)|
| prime(n+2) prime(n+1)|. - Zak Seidov, Jul 23 2008, indices corrected by Gary Detlefs, Dec 09 2011
a(n) = 2*A342567(n+1) for n >= 2. - Hugo Pfoertner, Jun 20 2021
Comments