cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056241 Triangle T(n,k) = number of k-part order-consecutive partitions of n (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 19, 10, 1, 1, 15, 45, 45, 15, 1, 1, 21, 90, 141, 90, 21, 1, 1, 28, 161, 357, 357, 161, 28, 1, 1, 36, 266, 784, 1107, 784, 266, 36, 1, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1, 1, 55, 615, 2850, 6765, 8953, 6765, 2850, 615, 55
Offset: 1

Views

Author

Colin Mallows, Aug 23 2000

Keywords

Comments

Forms the even-indexed trinomial coefficients (A027907). Matrix inverse is A104027. - Paul D. Hanna, Feb 26 2005
Subtriangle (for 1<=k<=n) of triangle defined by [0, 1, 0, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 29 2006

Examples

			Triangle begins:
  1;
  1,1;
  1,3,1;
  1,6,6,1;
  1,10,19,10,1;
  ...
Triangle (0, 1, 0, 1, 0, 0, 0...) DELTA (1, 0, 1, 0, 0, 0, ...) begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 3, 1;
  0, 1, 6, 6, 1;
  0, 1, 10, 19, 10, 1;
  0, 1, 15, 45, 45, 15, 1;
  0, 1, 21, 90, 141, 90, 21, 1;
  ... - _Philippe Deléham_, Mar 27 2014
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Sum[ Binomial[n, j]*Binomial[n-j, 2*(k-j)], {j, 0, n}]; Flatten[ Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, Oct 11 2011, after Paul Barry *)
  • PARI
    T(n,k)=if(nPaul D. Hanna

Formula

T(n, k) = Sum_{j=0..k-1} C(n-1, 2k-j-2)*C(2k-j-2, j).
G.f.: A(x, y) = (1 - x*(1+y))/(1 - 2*x*(1+y) + x^2*(1+y+y^2)) (offset=0). - Paul D. Hanna, Feb 26 2005
Sum_{k, 1<=k<=n}T(n,k)=A124302(n). Sum_{k, 1<=k<=n}(-1)^(n-k)*T(n,k)=A117569(n). - Philippe Deléham, Oct 29 2006
From Paul Barry, Sep 28 2010: (Start)
G.f.: 1/(1-x-xy-x^2y/(1-x-xy)).
E.g.f.: exp((1+y)x)*cosh(sqrt(y)*x).
T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2*(k-j)). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) - T(n-2,k-2), T(1,1) = T(2,1) = T(2,2) = 1, T(n,k) = 0 if k<1 or if k>n. - Philippe Deléham, Mar 27 2014

Extensions

More terms from James Sellers, Aug 25 2000
More terms from Paul D. Hanna, Feb 26 2005