A104027
Triangle, read by rows, equal to the matrix inverse of A056241, which is formed from the even-indexed trinomial coefficients.
Original entry on oeis.org
1, -1, 1, 2, -3, 1, -7, 12, -6, 1, 41, -73, 41, -10, 1, -376, 675, -390, 105, -15, 1, 5033, -9048, 5256, -1446, 225, -21, 1, -92821, 166901, -97034, 26796, -4242, 427, -28, 1, 2257166, -4058703, 2359939, -652054, 103515, -10570, 742, -36, 1, -69981919, 125837748, -73169550, 20218251, -3210939
Offset: 0
Rows begin:
1;
-1,1;
2,-3,1;
-7,12,-6,1;
41,-73,41,-10,1;
-376,675,-390,105,-15,1;
5033,-9048,5256,-1446,225,-21,1;
-92821,166901,-97034,26796,-4242,427,-28,1;
2257166,-4058703,2359939,-652054,103515,-10570,742,-36,1; ...
A104028
Column 1 of triangle A104027, which is the matrix inverse of the triangle A056241 of even-indexed trinomial coefficients.
Original entry on oeis.org
1, -3, 12, -73, 675, -9048, 166901, -4058703, 125837748, -4845013765, 226796981895, -12684595018992, 835391818484873, -63990023222817531, 5640684058036591260, -566948619030797914657, 64452061572236327204235, -8228252550026752605862344
Offset: 0
-
{a(n)=if(n<0,0,((matrix(n+2,n+2,m,j, if(m>=j,polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-2))))^-1)[n+2,2])}
A124302
Number of set partitions with at most 3 blocks; number of Dyck paths of height at most 4; dimension of space of symmetric polynomials in 3 noncommuting variables.
Original entry on oeis.org
1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, 265721, 797162, 2391485, 7174454, 21523361, 64570082, 193710245, 581130734, 1743392201, 5230176602, 15690529805, 47071589414, 141214768241, 423644304722, 1270932914165, 3812798742494, 11438396227481
Offset: 0
There are 15 set partitions of {1,2,3,4}, only {{1},{2},{3},{4}} has more than 3 blocks, so a(4) = 14.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 41*x^5 + 122*x^6 + 365*x^7 + ...
- R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Per Alexandersson and Frether Getachew, An involution on derangements, arXiv:2105.08455 [math.CO], 2021.
- N. Bergeron, C. Reutenauer, M. Rosas and M. Zabrocki, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, arXiv:math/0502082 [math.CO], 2005; Canad. J. Math. 60 (2008), no. 2, 266-296.
- Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
- S. Felsner and D. Heldt, Lattice Path Enumeration and Toeplitz Matrices, J. Int. Seq. 18 (2015) # 15.1.3.
- Daniel Heldt, On the mixing time of the face flip-and up/down Markov chain for some families of graphs, Dissertation, Mathematik und Naturwissenschaften der Technischen Universitat Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften, 2016.
- M. Hyatt and J. Remmel, The classification of 231-avoiding permutations by descents and maximum drop, arXiv preprint arXiv:1208.1052 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 24 2012
- V. Jelinek, T. Mansour, and M. Shattuck, On multiple pattern avoiding set partitions, Adv. Appl. Math. 50 (2) (2013) 292-326, - From _N. J. A. Sloane_, Jan 01 2013
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243 [math.CO], 2012-2014 (Corollary 3, case k=4, pages 10-11). - From _N. J. A. Sloane_, May 09 2012
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv:1302.2274)
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.
- Santiago Rojas-Rojas, Camila Muñoz, Edgar Barriga, Pablo Solano, Aldo Delgado, and Carla Hermann-Avigliano, Analytic Evolution for Complex Coupled Tight-Binding Models: Applications to Quantum Light Manipulation, arXiv:2310.12366 [quant-ph], 2023. See p. 12.
- M. Rosas and B. Sagan, Symmetric Functions in Noncommuting Variables, Transactions of the American Mathematical Society, 358 (2006), no. 1, 215-232.
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
-
I:=[1, 1, 2]; [n le 3 select I[n] else 4*Self(n-1) - 3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 25 2012
-
a:= proc(n); if n<3 then [1,1,2][n+1]; else 4*a(n-1)-3*a(n-2); fi; end:
# Mike Zabrocki, Oct 25 2006
with(GraphTheory): G:=PathGraph(5): A:= AdjacencyMatrix(G): nmax:=27; for n from 0 to 2*nmax do B(n):=A^n; b(n):=B(n)[1,1]; od: for n from 0 to nmax do a(n):=b(2*n) od: seq(a(n),n=0..nmax);
# Johannes W. Meijer, May 29 2010
-
a=Exp[x]-1; Range[0, 20]! CoefficientList[Series[1+a+a^2/2+a^3/6, {x,0,20}],x]
Join[{1}, LinearRecurrence[{4, -3}, {1, 2}, 20]] (* David Nacin, Feb 26 2012 *)
CoefficientList[Series[1 / (1 - x / (1 - x / (1 - x / (1 - x)))), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 25 2012 *)
Table[Sum[StirlingS2[n,k],{k,0,3}],{n,0,30}] (* Robert A. Russell, Mar 29 2018 *)
-
{a(n) = if( n<1, n==0, (3^(n-1) + 1) / 2)}; /* Michael Somos, Apr 03 2014 */
-
def a(n, adict={0:1, 1:1, 2:2}):
if n in adict:
return adict[n]
adict[n]=4*a(n-1) - 3*a(n-2)
return adict[n] # David Nacin, Mar 04 2012
A083878
a(0)=1, a(1)=3, a(n) = 6*a(n-1) - 7*a(n-2), n >= 2.
Original entry on oeis.org
1, 3, 11, 45, 193, 843, 3707, 16341, 72097, 318195, 1404491, 6199581, 27366049, 120799227, 533233019, 2353803525, 10390190017, 45864515427, 202455762443, 893682966669, 3944907462913, 17413664010795, 76867631824379
Offset: 0
-
f[n_] := Simplify[(3 + Sqrt@2)^n + (3 - Sqrt@2)^n]/2; Array[f, 23, 0] (* Robert G. Wilson v, Oct 31 2010 *)
A180957
Generalized Narayana triangle for (-1)^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, -2, -5, -2, 1, 1, -5, -15, -15, -5, 1, 1, -9, -30, -41, -30, -9, 1, 1, -14, -49, -77, -77, -49, -14, 1, 1, -20, -70, -112, -125, -112, -70, -20, 1, 1, -27, -90, -126, -117, -117, -126, -90, -27, 1, 1, -35, -105, -90, 45, 131, 45, -90, -105, -35, 1
Offset: 0
Triangle begins
1;
1, 1;
1, 1, 1;
1, 0, 0, 1;
1, -2, -5, -2, 1;
1, -5, -15, -15, -5, 1;
1, -9, -30, -41, -30, -9, 1;
1, -14, -49, -77, -77, -49, -14, 1;
1, -20, -70, -112, -125, -112, -70, -20, 1;
1, -27, -90, -126, -117, -117, -126, -90, -27, 1;
1, -35, -105, -90, 45, 131, 45, -90, -105, -35, 1;
-
A180957:= func< n,k | (&+[ (-1)^(k-j)*Binomial(n, j)*Binomial(n-j, 2*(k-j)) : j in [0..n]]) >;
[A180957(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021
-
T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n, j]*Binomial[n-j, 2*(k-j)], {j,0,n}];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
-
def A180957(n,k): return sum( (-1)^(k+j)*binomial(n,j)*binomial(n-j, 2*(k-j)) for j in (0..n))
flatten([[A180957(n,k) for k in (0..n)] for n in [0..15]]) # G. C. Greubel, Apr 06 2021
A124216
Generalized Pascal triangle.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 34, 16, 1, 1, 25, 90, 90, 25, 1, 1, 36, 195, 328, 195, 36, 1, 1, 49, 371, 931, 931, 371, 49, 1, 1, 64, 644, 2240, 3334, 2240, 644, 64, 1, 1, 81, 1044, 4788, 9846, 9846
Offset: 0
Triangle begins
1,
1, 1,
1, 4, 1,
1, 9, 9, 1,
1, 16, 34, 16, 1,
1, 25, 90, 90, 25, 1,
1, 36, 195, 328, 195, 36, 1,
1, 49, 371, 931, 931, 371, 49, 1
A152265
a(n) = ((8 + sqrt(7))^n + (8 - sqrt(7))^n)/2.
Original entry on oeis.org
1, 8, 71, 680, 6833, 70568, 739607, 7811336, 82823777, 879934280, 9357993191, 99571637096, 1059740581649, 11280265991912, 120079042716599, 1278289521926600, 13608126915979457, 144867527905855112
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008
A122935
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, 0, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 19, 10, 1, 0, 1, 15, 45, 45, 15, 1, 0, 1, 21, 90, 141, 90, 21, 1, 0, 1, 28, 161, 357, 357, 161, 28, 1, 0, 1, 36, 266, 784, 1107, 784, 266, 36, 1, 0, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1, 0, 1, 55, 615, 2850, 6765, 8953
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 6, 6, 1;
0, 1, 10, 19, 10, 1;
0, 1, 15, 45, 45, 15, 1;
0, 1, 21, 90, 141, 90, 21, 1;
0, 1, 28, 161, 357, 357, 161, 28, 1;
0, 1, 36, 266, 784, 1107, 784, 255, 36, 1;
0, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1;
0, 1, 55, 615, 2850, 6765, 8953, 6765, 2850, 615, 55, 1;
A123934
Triangle T(n,k), 1<=k<=n :forms the odd-indexed trinomial coefficients (A027907).
Original entry on oeis.org
1, 2, 2, 3, 7, 3, 4, 16, 16, 4, 5, 30, 51, 30, 5, 6, 50, 126, 126, 50, 6, 7, 77, 266, 393, 266, 77, 7
Offset: 1
Triangle begins:
1;
2, 2;
3, 7, 3;
4, 16, 16, 4;
5, 30, 51, 30, 5;
6, 50, 126, 126, 50, 6;
7, 77, 266, 393, 266, 77, 7;
Showing 1-9 of 9 results.
Comments