A104028
Column 1 of triangle A104027, which is the matrix inverse of the triangle A056241 of even-indexed trinomial coefficients.
Original entry on oeis.org
1, -3, 12, -73, 675, -9048, 166901, -4058703, 125837748, -4845013765, 226796981895, -12684595018992, 835391818484873, -63990023222817531, 5640684058036591260, -566948619030797914657, 64452061572236327204235, -8228252550026752605862344
Offset: 0
-
{a(n)=if(n<0,0,((matrix(n+2,n+2,m,j, if(m>=j,polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-2))))^-1)[n+2,2])}
A006846
Hammersley's polynomial p_n(1).
Original entry on oeis.org
1, 1, 2, 7, 41, 376, 5033, 92821, 2257166, 69981919, 2694447797, 126128146156, 7054258103921, 464584757637001, 35586641825705882, 3136942184333040727, 315295985573234822561, 35843594275585750890976, 4575961401477587844760793, 651880406652100451820206941
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23.
- J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23. (Annotated scanned copy)
-
function A006846list(len::Int) # Algorithm of L. Seidel (1877)
R = Array{BigInt}(len)
A = fill(BigInt(0), len+1); A[1] = 1
for n in 1:len
for k in n:-1:2 A[k] += A[k+1] end
for k in 2:1:n A[k] += A[k-1] end
R[n] = A[n]
end
return R
end
println(A006846list(20)) # Peter Luschny, Jan 02 2018
-
A006846 := proc(n)
option remember ;
if n =0 then
return 1;
else
add(binomial(2*n,2*m)*procname(m)/(-4)^(n-m),m=0..n-1) ;
(3/4)^n-% ;
end if
end proc:
seq(A006846(n),n=0..20) ; # R. J. Mathar, Jan 10 2018
-
h[n_, x_] := Sum[c[k] x^k, {k, 0, n}]; eq[n_] := SolveAlways[h[n, x*(x-1)] == EulerE[2*n, x], x]; a[n_] := Sum[(-1)^(n+k)*c[k], {k, 0, n}] /. eq[n] // First; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 02 2013, after Philippe Deléham *)
-
{a(n)=local(X=x+x*O(x^(2*n))); round((2*n)!*polcoeff(cosh(sqrt(3)*X/2)/cos(X/2),2*n))} \\ Paul D. Hanna
A056241
Triangle T(n,k) = number of k-part order-consecutive partitions of n (1<=k<=n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 19, 10, 1, 1, 15, 45, 45, 15, 1, 1, 21, 90, 141, 90, 21, 1, 1, 28, 161, 357, 357, 161, 28, 1, 1, 36, 266, 784, 1107, 784, 266, 36, 1, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1, 1, 55, 615, 2850, 6765, 8953, 6765, 2850, 615, 55
Offset: 1
Triangle begins:
1;
1,1;
1,3,1;
1,6,6,1;
1,10,19,10,1;
...
Triangle (0, 1, 0, 1, 0, 0, 0...) DELTA (1, 0, 1, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 6, 6, 1;
0, 1, 10, 19, 10, 1;
0, 1, 15, 45, 45, 15, 1;
0, 1, 21, 90, 141, 90, 21, 1;
... - _Philippe Deléham_, Mar 27 2014
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See p. 6.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
- Karl Dilcher and Larry Ericksen, Polynomials and algebraic curves related to certain binary and b-ary overpartitions, arXiv:2405.12024 [math.CO], 2024. See p. 7.
- F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
-
t[n_, k_] := Sum[ Binomial[n, j]*Binomial[n-j, 2*(k-j)], {j, 0, n}]; Flatten[ Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, Oct 11 2011, after Paul Barry *)
-
T(n,k)=if(nPaul D. Hanna
A104030
Matrix inverse, read by rows, of triangle A104029, which forms the pairwise sums of trinomial coefficients.
Original entry on oeis.org
1, -2, 1, 7, -5, 1, -41, 32, -9, 1, 376, -299, 91, -14, 1, -5033, 4015, -1241, 205, -20, 1, 92821, -74080, 22954, -3842, 400, -27, 1, -2257166, 1801537, -558402, 93652, -9863, 707, -35, 1, 69981919, -55855829, 17313721, -2904530, 306409, -22190, 1162, -44, 1, -2694447797, 2150565968
Offset: 0
Rows begin:
1;
-2,1;
7,-5,1;
-41,32,-9,1;
376,-299,91,-14,1;
-5033,4015,-1241,205,-20,1;
92821,-74080,22954,-3842,400,-27,1;
-2257166,1801537,-558402,93652,-9863,707,-35,1; ...
-
T(n,k)=if(n=j, polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-2)+ polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-1))))^-1)[n+1,k+1])
A104029
Triangle, read by rows, of pairwise sums of trinomial coefficients (A027907).
Original entry on oeis.org
1, 2, 1, 3, 5, 1, 4, 13, 9, 1, 5, 26, 35, 14, 1, 6, 45, 96, 75, 20, 1, 7, 71, 216, 267, 140, 27, 1, 8, 105, 427, 750, 623, 238, 35, 1, 9, 148, 770, 1800, 2123, 1288, 378, 44, 1, 10, 201, 1296, 3858, 6046, 5211, 2436, 570, 54, 1, 11, 265, 2067, 7590, 15115, 17303, 11505
Offset: 0
Row 3: {4,13,9,1} is formed from the pairwise sums
of row 3 of A027907: {1,3, 6,7, 6,3, 1}.
Rows begin:
1;
2, 1;
3, 5, 1;
4, 13, 9, 1;
5, 26, 35, 14, 1;
6, 45, 96, 75, 20, 1;
7, 71, 216, 267, 140, 27, 1;
8, 105, 427, 750, 623, 238, 35, 1;
9, 148, 770, 1800, 2123, 1288, 378, 44, 1;
10, 201, 1296, 3858, 6046, 5211, 2436, 570, 54, 1;
11, 265, 2067, 7590, 15115, 17303, 11505, 4302, 825, 65, 1;
12, 341, 3157, 13959, 34210, 49721, 43923, 23397, 7194, 1155, 77, 1; ...
-
{T(n,k)=polcoeff((1+x+x^2)^n+x*O(x^(2*k)),2*k)+ polcoeff((1+x+x^2)^n+x*O(x^(2*k+1)),2*k+1)}
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
{T(n,k)=polcoeff(polcoeff((1-x*y)/(1-2*x*(1+y)+x^2*(1+y+y^2)) +x*O(x^n),n,x)+y*O(y^k),k,y)}
Showing 1-5 of 5 results.
Comments