cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A104028 Column 1 of triangle A104027, which is the matrix inverse of the triangle A056241 of even-indexed trinomial coefficients.

Original entry on oeis.org

1, -3, 12, -73, 675, -9048, 166901, -4058703, 125837748, -4845013765, 226796981895, -12684595018992, 835391818484873, -63990023222817531, 5640684058036591260, -566948619030797914657, 64452061572236327204235, -8228252550026752605862344
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2005

Keywords

Comments

Column 0 of triangle A104027 forms signed Hammersley's polynomial p_n(1) (A006846).

Crossrefs

Programs

  • PARI
    {a(n)=if(n<0,0,((matrix(n+2,n+2,m,j, if(m>=j,polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-2))))^-1)[n+2,2])}

A006846 Hammersley's polynomial p_n(1).

Original entry on oeis.org

1, 1, 2, 7, 41, 376, 5033, 92821, 2257166, 69981919, 2694447797, 126128146156, 7054258103921, 464584757637001, 35586641825705882, 3136942184333040727, 315295985573234822561, 35843594275585750890976, 4575961401477587844760793, 651880406652100451820206941
Offset: 0

Views

Author

Keywords

Comments

Equals column 0 of triangle A104027. Also equals column 0 of triangle A104030 (offset 1). Both A104027 and A104030 involve the trinomial coefficients. - Paul D. Hanna, Mar 06 2005

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Julia
    function A006846list(len::Int)  # Algorithm of L. Seidel (1877)
        R = Array{BigInt}(len)
        A = fill(BigInt(0), len+1); A[1] = 1
        for n in 1:len
            for k in n:-1:2 A[k] += A[k+1] end
            for k in 2:1:n A[k] += A[k-1] end
            R[n] = A[n]
        end
        return R
    end
    println(A006846list(20)) # Peter Luschny, Jan 02 2018
  • Maple
    A006846 := proc(n)
        option remember ;
        if n =0 then
            return 1;
        else
            add(binomial(2*n,2*m)*procname(m)/(-4)^(n-m),m=0..n-1) ;
            (3/4)^n-% ;
        end if
    end proc:
    seq(A006846(n),n=0..20) ; # R. J. Mathar, Jan 10 2018
  • Mathematica
    h[n_, x_] := Sum[c[k] x^k, {k, 0, n}]; eq[n_] := SolveAlways[h[n, x*(x-1)] == EulerE[2*n, x], x]; a[n_] := Sum[(-1)^(n+k)*c[k], {k, 0, n}] /. eq[n] // First; Table[a[n], {n, 0, 15}]   (* Jean-François Alcover, Oct 02 2013, after Philippe Deléham *)
  • PARI
    {a(n)=local(X=x+x*O(x^(2*n))); round((2*n)!*polcoeff(cosh(sqrt(3)*X/2)/cos(X/2),2*n))} \\ Paul D. Hanna
    

Formula

a(n) = Sum_{k>=0} (-1)^(n+k)*A065547(n, k) = Sum_{k>=0} A085707(n, k). - Philippe Deléham, Feb 26 2004
E.g.f.: cosh(sqrt(3)*x/2)/cos(x/2) = Sum_{n>=0} a(n)*x^(2n)/(2n)!. - Paul D. Hanna, Feb 27 2005
a(n) = (-1)^n*A104027(n, 0). a(n+1) = (-1)^(n+1)*A104030(n, 0). - Paul D. Hanna, Mar 06 2005
G.f.: 1/(1-x/(1-x/(1-3x/(1-4x/(1-7x/(1-.../(1-ceiling((n+1)^2/4)*x/(1-... (continued fraction). - Paul Barry, Feb 24 2010
a(n) ~ 4*cosh(sqrt(3)*Pi/2) * (2*n)! / Pi^(2*n+1). - Vaclav Kotesovec, Jun 07 2021

A056241 Triangle T(n,k) = number of k-part order-consecutive partitions of n (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 19, 10, 1, 1, 15, 45, 45, 15, 1, 1, 21, 90, 141, 90, 21, 1, 1, 28, 161, 357, 357, 161, 28, 1, 1, 36, 266, 784, 1107, 784, 266, 36, 1, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1, 1, 55, 615, 2850, 6765, 8953, 6765, 2850, 615, 55
Offset: 1

Views

Author

Colin Mallows, Aug 23 2000

Keywords

Comments

Forms the even-indexed trinomial coefficients (A027907). Matrix inverse is A104027. - Paul D. Hanna, Feb 26 2005
Subtriangle (for 1<=k<=n) of triangle defined by [0, 1, 0, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 29 2006

Examples

			Triangle begins:
  1;
  1,1;
  1,3,1;
  1,6,6,1;
  1,10,19,10,1;
  ...
Triangle (0, 1, 0, 1, 0, 0, 0...) DELTA (1, 0, 1, 0, 0, 0, ...) begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 3, 1;
  0, 1, 6, 6, 1;
  0, 1, 10, 19, 10, 1;
  0, 1, 15, 45, 45, 15, 1;
  0, 1, 21, 90, 141, 90, 21, 1;
  ... - _Philippe Deléham_, Mar 27 2014
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Sum[ Binomial[n, j]*Binomial[n-j, 2*(k-j)], {j, 0, n}]; Flatten[ Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, Oct 11 2011, after Paul Barry *)
  • PARI
    T(n,k)=if(nPaul D. Hanna

Formula

T(n, k) = Sum_{j=0..k-1} C(n-1, 2k-j-2)*C(2k-j-2, j).
G.f.: A(x, y) = (1 - x*(1+y))/(1 - 2*x*(1+y) + x^2*(1+y+y^2)) (offset=0). - Paul D. Hanna, Feb 26 2005
Sum_{k, 1<=k<=n}T(n,k)=A124302(n). Sum_{k, 1<=k<=n}(-1)^(n-k)*T(n,k)=A117569(n). - Philippe Deléham, Oct 29 2006
From Paul Barry, Sep 28 2010: (Start)
G.f.: 1/(1-x-xy-x^2y/(1-x-xy)).
E.g.f.: exp((1+y)x)*cosh(sqrt(y)*x).
T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2*(k-j)). (End)
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) - T(n-2,k-2), T(1,1) = T(2,1) = T(2,2) = 1, T(n,k) = 0 if k<1 or if k>n. - Philippe Deléham, Mar 27 2014

Extensions

More terms from James Sellers, Aug 25 2000
More terms from Paul D. Hanna, Feb 26 2005

A104030 Matrix inverse, read by rows, of triangle A104029, which forms the pairwise sums of trinomial coefficients.

Original entry on oeis.org

1, -2, 1, 7, -5, 1, -41, 32, -9, 1, 376, -299, 91, -14, 1, -5033, 4015, -1241, 205, -20, 1, 92821, -74080, 22954, -3842, 400, -27, 1, -2257166, 1801537, -558402, 93652, -9863, 707, -35, 1, 69981919, -55855829, 17313721, -2904530, 306409, -22190, 1162, -44, 1, -2694447797, 2150565968
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2005

Keywords

Comments

Column 0 forms signed Hammersley's polynomial p_n(1) (A006846), offset 1.
Row sums equal negative Genocchi numbers of first kind (A001469).
Rows form polynomials R_n(x) such that: R_n(3) = 1 for n>=0 and R_n(1/2) = (-1)^n*A005647(n+1)/2^n (signed Salie numbers).
Column 1 forms A104031.
Unsigned row sums form A104032.

Examples

			Rows begin:
1;
-2,1;
7,-5,1;
-41,32,-9,1;
376,-299,91,-14,1;
-5033,4015,-1241,205,-20,1;
92821,-74080,22954,-3842,400,-27,1;
-2257166,1801537,-558402,93652,-9863,707,-35,1; ...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n=j, polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-2)+ polcoeff((1+x+x^2)^(m-1)+O(x^(2*j)),2*j-1))))^-1)[n+1,k+1])

A104029 Triangle, read by rows, of pairwise sums of trinomial coefficients (A027907).

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 13, 9, 1, 5, 26, 35, 14, 1, 6, 45, 96, 75, 20, 1, 7, 71, 216, 267, 140, 27, 1, 8, 105, 427, 750, 623, 238, 35, 1, 9, 148, 770, 1800, 2123, 1288, 378, 44, 1, 10, 201, 1296, 3858, 6046, 5211, 2436, 570, 54, 1, 11, 265, 2067, 7590, 15115, 17303, 11505
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2005

Keywords

Comments

Matrix inverse is A104030. Antidiagonal sums form unsigned A078039.

Examples

			Row 3: {4,13,9,1} is formed from the pairwise sums
of row 3 of A027907: {1,3, 6,7, 6,3, 1}.
Rows begin:
1;
2, 1;
3, 5, 1;
4, 13, 9, 1;
5, 26, 35, 14, 1;
6, 45, 96, 75, 20, 1;
7, 71, 216, 267, 140, 27, 1;
8, 105, 427, 750, 623, 238, 35, 1;
9, 148, 770, 1800, 2123, 1288, 378, 44, 1;
10, 201, 1296, 3858, 6046, 5211, 2436, 570, 54, 1;
11, 265, 2067, 7590, 15115, 17303, 11505, 4302, 825, 65, 1;
12, 341, 3157, 13959, 34210, 49721, 43923, 23397, 7194, 1155, 77, 1; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=polcoeff((1+x+x^2)^n+x*O(x^(2*k)),2*k)+ polcoeff((1+x+x^2)^n+x*O(x^(2*k+1)),2*k+1)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
    
  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x*y)/(1-2*x*(1+y)+x^2*(1+y+y^2)) +x*O(x^n),n,x)+y*O(y^k),k,y)}

Formula

G.f.: A(x, y) = (1-x*y)/(1 - 2*x*(1+y) + x^2*(1+y+y^2) ).
T(n, k) = [x^(2k)](1+x+x^2)^n + [x^(2k+1)](1+x+x^2)^n.
Showing 1-5 of 5 results.