A152175 Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations.
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 18, 13, 3, 1, 1, 9, 43, 50, 20, 3, 1, 1, 19, 126, 221, 136, 36, 4, 1, 1, 29, 339, 866, 773, 296, 52, 4, 1, 1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1, 1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1
Offset: 1
Examples
Triangle begins with T(1,1): 1; 1, 1; 1, 1, 1; 1, 3, 2, 1; 1, 3, 5, 2, 1; 1, 7, 18, 13, 3, 1; 1, 9, 43, 50, 20, 3, 1; 1, 19, 126, 221, 136, 36, 4, 1; 1, 29, 339, 866, 773, 296, 52, 4, 1; 1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1; 1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105 , 5, 1; 1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1; 1, 315, 20125, 194810, 577577, 717024, 439648, 146124, 27654, 3025, 187, 6, 1; ... For T(4,2)=3, the set partitions are AAAB, AABB, and ABAB. For T(4,3)=2, the set partitions are AABC and ABAC.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- Tilman Piesk, Partition related number triangles
Crossrefs
Programs
-
Mathematica
(* Using recursion formula from Gilbert and Riordan:*) Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &], 1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}], True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]]; Table[CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x], {n, 1, 10}] // Flatten (* Robert A. Russell, Feb 23 2018 *) Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]] Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/n,{n,1,12},{k,1,n}] // Flatten (* Robert A. Russell, Oct 16 2018 *)
-
PARI
\\ see A056391 for Polya enumeration functions T(n,k) = NonequivalentStructsExactly(CyclicPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
-
PARI
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))} { my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
Formula
T(n,k) = (1/n)*Sum_{d|n} phi(d)*A(d,n/d,k), where A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)). - Robert A. Russell, Oct 16 2018
Comments