cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056308 Number of reversible strings with n beads using a maximum of six different colors.

Original entry on oeis.org

1, 6, 21, 126, 666, 3996, 23436, 140616, 840456, 5042736, 30236976, 181421856, 1088414496, 6530486976, 39182222016, 235093332096, 1410555793536, 8463334761216, 50779983373056, 304679900238336, 1828079250264576, 10968475501587456, 65810852102532096
Offset: 0

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Thus aabc and cbaa are considered to be identical, but abca is a different string.

Examples

			For a(2)=21, the six achiral strings are AA, BB, CC, DD, EE, and FF; the 15 (equivalent) chiral pairs are AB-BA, AC-CA, AD-DA, AE-EA, AF-FA, BC-CB, BD-DB, BE-EB, BF-FB, CD-DC, CE-EC, CF-FC, DE-ED, DF-FD, and EF-FE.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A277504.
Cf. A000400 (oriented), A320524 (chiral), A056452 (achiral).

Programs

  • Magma
    I:=[1,6,21]; [n le 3 select I[n] else 6*Self(n-1) +6*Self(n-2) - 36*Self(n-3): n in [1..30]]; // G. C. Greubel, Nov 10 2018
  • Mathematica
    k=6; Table[(k^n+k^Ceiling[n/2])/2,{n,0,30}] (* Robert A. Russell, Nov 25 2017 *)
    a[ n_] := (6^n + 6^Quotient[n + 1, 2]) / 2; (* Michael Somos, Jul 10 2018 *)
    LinearRecurrence[{6, 6, -36}, {1, 6, 21}, 31] (* Robert A. Russell, Nov 10 2018 *)
  • PARI
    Vec((1-21*x^2) / ((1 - 6*x)*(1 - 6*x^2)) + O(x^30)) \\ Colin Barker, Mar 20 2017 [Adapted to offset 0 by Robert A. Russell, Nov 10 2018]
    
  • PARI
    {a(n) = (6^n + 6^((n+1)\2)) / 2}; \\ Michael Somos, Jul 10 2018
    

Formula

a(n) = (6^n + 6^floor((n+1)/2))/2.
G.f.: (1-21*x^2) / ((1-6*x)*(1-6*x^2)). - R. J. Mathar, Jul 06 2011 [Adapted to offset 0 by Robert A. Russell, Nov 10 2018]
a(n) = 6*a(n-1) + 6*a(n-2) - 36*a(n-3) for n > 3. - Colin Barker, Mar 20 2017
a(n) = (A000400(n) + A056452(n)) / 2. - Robert A. Russell, Jun 19 2018
a(n) = 6^(n + floor((n-1)/2)) * a(1-n) for all n in Z. - Michael Somos, Jul 10 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 10 2018