cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A277504 Array read by descending antidiagonals: T(n,k) is the number of unoriented strings with n beads of k or fewer colors.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 6, 1, 0, 1, 5, 10, 18, 10, 1, 0, 1, 6, 15, 40, 45, 20, 1, 0, 1, 7, 21, 75, 136, 135, 36, 1, 0, 1, 8, 28, 126, 325, 544, 378, 72, 1, 0, 1, 9, 36, 196, 666, 1625, 2080, 1134, 136, 1, 0, 1, 10, 45, 288, 1225, 3996, 7875, 8320, 3321, 272, 1, 0
Offset: 0

Views

Author

Jean-François Alcover, Oct 18 2016

Keywords

Comments

From Petros Hadjicostas, Jul 07 2018: (Start)
Column k of this array is the "BIK" (reversible, indistinct, unlabeled) transform of k,0,0,0,....
Consider the input sequence (c_k(n): n >= 1) with g.f. C_k(x) = Sum_{n>=1} c_k(n)*x^n. Let a_k(n) = BIK(c_k(n): n >= 1) be the output sequence under Bower's BIK transform. It can proved that the g.f. of BIK(c_k(n): n >= 1) is A_k(x) = (1/2)*(C_k(x)/(1-C_k(x)) + (C_k(x^2) + C_k(x))/(1-C_k(x^2))). (See the comments for sequence A001224.)
For column k of this two-dimensional array, the input sequence is defined by c_k(1) = k and c_k(n) = 0 for n >= 1. Thus, C_k(x) = k*x, and hence the g.f. of column k is (1/2)*(C_k(x)/(1-C_k(x)) + (C_k(x^2) + C_k(x))/(1-C_k(x^2))) = (1/2)*(k*x/(1-k*x) + (k*x^2 + k*x)/(1-k*x^2)) = (2 + (1-k)*x - 2*k*x^2)*k*x/(2*(1-k*x^2)*(1-k*x)).
Using the first form the g.f. above and the expansion 1/(1-y) = 1 + y + y^2 + ..., we can easily prove J.-F. Alcover's formula T(n,k) = (k^n + k^((n + mod(n,2))/2))/2.
(End)

Examples

			Array begins with T(0,0):
1 1   1     1      1       1        1         1         1          1 ...
0 1   2     3      4       5        6         7         8          9 ...
0 1   3     6     10      15       21        28        36         45 ...
0 1   6    18     40      75      126       196       288        405 ...
0 1  10    45    136     325      666      1225      2080       3321 ...
0 1  20   135    544    1625     3996      8575     16640      29889 ...
0 1  36   378   2080    7875    23436     58996    131328     266085 ...
0 1  72  1134   8320   39375   140616    412972   1050624    2394765 ...
0 1 136  3321  32896  195625   840456   2883601   8390656   21526641 ...
0 1 272  9963 131584  978125  5042736  20185207  67125248  193739769 ...
0 1 528 29646 524800 4884375 30236976 141246028 536887296 1743421725 ...
...
		

References

Crossrefs

Columns 0-6 are A000007, A000012, A005418(n+1), A032120, A032121, A032122, A056308.
Rows 0-20 are A000012, A001477, A000217 (triangular numbers), A002411 (pentagonal pyramidal numbers), A037270, A168178, A071232, A168194, A071231, A168372, A071236, A168627, A071235, A168663, A168664, A170779, A170780, A170790, A170791, A170801, A170802.
Main diagonal is A275549.
Transpose is A284979.
Cf. A003992 (oriented), A293500 (chiral), A321391 (achiral).

Programs

  • Magma
    [[n le 0 select 1 else ((n-k)^k + (n-k)^Ceiling(k/2))/2: k in [0..n]]: n in [0..15]]; // G. C. Greubel, Nov 15 2018
  • Mathematica
    Table[If[n>0, ((n-k)^k + (n-k)^Ceiling[k/2])/2, 1], {n, 0, 15}, {k, 0, n}] // Flatten (* updated Jul 10 2018 *) (* Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018 *)
  • PARI
    for(n=0,15, for(k=0,n, print1(if(n==0,1, ((n-k)^k + (n-k)^ceil(k/2))/2), ", "))) \\ G. C. Greubel, Nov 15 2018
    
  • PARI
    T(n,k) = {(k^n + k^ceil(n/2)) / 2} \\ Andrew Howroyd, Sep 13 2019
    

Formula

T(n,k) = [n==0] + [n>0] * (k^n + k^ceiling(n/2)) / 2. [Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018]
G.f. for column k: (1 - binomial(k+1,2)*x^2) / ((1-k*x)*(1-k*x^2)). - Petros Hadjicostas, Jul 07 2018 [Adapted to T(0,k)=1 by Robert A. Russell, Nov 13 2018]
From Robert A. Russell, Nov 13 2018: (Start)
T(n,k) = (A003992(k,n) + A321391(n,k)) / 2.
T(n,k) = A003992(k,n) - A293500(n,k) = A293500(n,k) + A321391(n,k).
G.f. for row n: (Sum_{j=0..n} S2(n,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=0..ceiling(n/2)} S2(ceiling(n/2),j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f. for row n>0: x*Sum_{k=0..n-1} A145882(n,k) * x^k / (1-x)^(n+1).
E.g.f. for row n: (Sum_{k=0..n} S2(n,k)*x^k + Sum_{k=0..ceiling(n/2)} S2(ceiling(n/2),k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
T(0,k) = 1; T(1,k) = k; T(2,k) = binomial(k+1,2); for n>2, T(n,k) = k*(T(n-3,k)+T(n-2,k)-k*T(n-1,k)).
For k>n, T(n,k) = Sum_{j=1..n+1} -binomial(j-n-2,j) * T(n,k-j). (End)

Extensions

Array transposed for greater consistency by Andrew Howroyd, Apr 04 2017
Origin changed to T(0,0) by Robert A. Russell, Nov 13 2018

A056325 Number of reversible string structures with n beads using a maximum of six different colors.

Original entry on oeis.org

1, 1, 2, 4, 11, 32, 117, 467, 2135, 10480, 55091, 301633, 1704115, 9819216, 57365191, 338134521, 2005134639, 11937364184, 71254895955, 426063226937, 2550552314219, 15280103807200, 91588104196415, 549159428968825
Offset: 0

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure. Thus aabc, cbaa and bbac are all considered to be identical.
Number of set partitions of an unoriented row of n elements with six or fewer nonempty subsets. - Robert A. Russell, Oct 28 2018
There are nonrecursive formulas, generating functions, and computer programs for A056273 and A305752, which can be used in conjunction with the first formula. - Robert A. Russell, Oct 28 2018
From Allan Bickle, Jun 23 2022: (Start)
a(n) is the number of (unlabeled) 6-paths with n+8 vertices. (A 6-path with order n at least 8 can be constructed from a 6-clique by iteratively adding a new 6-leaf (vertex of degree 6) adjacent to an existing 6-clique containing an existing 6-leaf.)
Recurrences appear in the papers by Bickle, Eckhoff, and Markenzon et al. (End)

Examples

			For a(4)=11, the 7 achiral patterns are AAAA, AABB, ABAB, ABBA, ABCA, ABBC, and ABCD.  The 4 chiral pairs are AAAB-ABBB, AABA-ABAA, AABC-ABCC, and ABAC-ABCB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A056308.
Column 6 of A320750.
Cf. A056273 (oriented), A320936 (chiral), A305752 (achiral).
The numbers of unlabeled k-paths for k = 2..7 are given in A005418, A001998, A056323, A056324, A056325, and A345207, respectively.
The sequences above converge to A103293(n+1).

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=6; Table[Sum[StirlingS2[n,j]+Ach[n,j],{j,0,k}]/2,{n,0,40}] (* Robert A. Russell, Oct 28 2018 *)
    LinearRecurrence[{16, -84, 84, 685, -2140, 180, 7200, -8244, -4176, 11664, -5184}, {1, 1, 2, 4, 11, 32, 117, 467, 2135, 10480, 55091, 301633}, 40] (* Robert A. Russell, Oct 28 2018 *)
  • PARI
    Vec((1 - 15*x + 70*x^2 - 28*x^3 - 654*x^4 + 1479*x^5 + 783*x^6 - 5481*x^7 + 3512*x^8 + 4640*x^9 - 5922*x^10 + 1530*x^11) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 6*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)) + O(x^30)) \\ Colin Barker, Apr 15 2020

Formula

Use de Bruijn's generalization of Polya's enumeration theorem as discussed in reference.
From Robert A. Russell, Oct 28 2018: (Start)
a(n) = (A056273(n) + A305752(n)) / 2.
a(n) = A056273(n) - A320936(n) = A320936(n) + A305752(n).
a(n) = Sum_{j=0..k} (S2(n,j) + Ach(n,j)) / 2, where k=6 is the maximum number of colors, S2 is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(n) = A000007(n) + A057427(n) + A056326(n) + A056327(n) + A056328(n) + A056329(n) + A056330(n).
(End)
From Colin Barker, Mar 24 2020: (Start)
G.f.: (1 - 15*x + 70*x^2 - 28*x^3 - 654*x^4 + 1479*x^5 + 783*x^6 - 5481*x^7 + 3512*x^8 + 4640*x^9 - 5922*x^10 + 1530*x^11) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 6*x)*(1 - 2*x^2)*(1 - 3*x^2)*(1 - 6*x^2)).
a(n) = 16*a(n-1) - 84*a(n-2) + 84*a(n-3) + 685*a(n-4) - 2140*a(n-5) + 180*a(n-6) + 7200*a(n-7) - 8244*a(n-8) - 4176*a(n-9) + 11664*a(n-10) - 5184*a(n-11) for n>11.
(End)
From Allan Bickle, Jun 23 2022: (Start)
a(n) = (1/1440)*6^n + (1/96)*4^n + (1/36)*3^n + (3/32)*2^n + (19/360)*6^(n/2) + (1/9)*3^(n/2) + (1/8)*2^(n/2) + 17/60 for n > 0 even;
a(n) = (1/1440)*6^n + (1/96)*4^n + (1/36)*3^n + (3/32)*2^n + (13/720)*6^((n+1)/2) + (1/18)*3^((n+1)/2) + (1/16)*2^((n+1)/2) + 17/60 for n > 0 odd. (End)

Extensions

Another term from Robert A. Russell, Oct 29 2018
a(0)=1 prepended by Robert A. Russell, Nov 09 2018

A056452 a(n) = 6^floor((n+1)/2).

Original entry on oeis.org

1, 6, 6, 36, 36, 216, 216, 1296, 1296, 7776, 7776, 46656, 46656, 279936, 279936, 1679616, 1679616, 10077696, 10077696, 60466176, 60466176, 362797056, 362797056, 2176782336, 2176782336, 13060694016, 13060694016, 78364164096
Offset: 0

Views

Author

Keywords

Comments

Number of achiral rows of length n using up to six different colors. For a(3) = 36, the rows are AAA, ABA, ACA, ADA, AEA, AFA, BAB, BBB, BCB, BDB, BEB, BFB, CAC, CBC, CCC, CDC, CEC, CFC, DAD, DBD, DCD, DDD, DED, DFD, EAE, EBE, ECE, EDE, EEE, EFE, FAF, FBF, FCF, FDF, FEF, and FFF. - Robert A. Russell, Nov 08 2018
Also: a(n) is the number of palindromes with n digits using a maximum of six different symbols. - David A. Corneth, Nov 09 2018

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column k=6 of A321391.
Cf. A016116.
Cf. A000400 (oriented), A056308 (unoriented), A320524 (chiral).

Programs

  • Magma
    [6^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
  • Maple
    A056452:=n->6^floor((n+1)/2);
  • Mathematica
    Riffle[6^Range[0, 20], 6^Range[20]] (* Harvey P. Dale, Jun 18 2017 *)
    Table[6^Ceiling[n/2], {n,0,40}] (* or *)
    LinearRecurrence[{0, 6}, {1, 6}, 40] (* Robert A. Russell, Nov 08 2018 *)

Formula

a(n) = 6^floor((n+1)/2).
a(n) = 6*a(n-2). - Colin Barker, May 06 2012
G.f.: (1+6*x) / (1-6*x^2). - Colin Barker, May 06 2012 [Adapted to offset 0 by Robert A. Russell, Nov 08 2018]
a(n) = C(6,0)*A000007(n) + C(6,1)*A057427(n) + C(6,2)*A056453(n) + C(6,3)*A056454(n) + C(6,4)*A056455(n) + C(6,5)*A056456(n) + C(6,6)*A056457(n). - Robert A. Russell, Nov 08 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 08 2018
Name corrected by David A. Corneth, Nov 08 2018

A056313 Number of reversible strings with n beads using exactly six different colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 360, 7560, 95760, 952560, 8217720, 64615680, 476515080, 3355679880, 22837101840, 151449674040, 984573656640, 6302070915840, 39847411326600, 249509384858160, 1550188410555960, 9570844671224760
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

Examples

			For n=6, the 360 rows are 360 permutations of ABCDEF that do not include any mutual reversals.  Each of the 360 chiral pairs, such as ABCDEF-FEDCBA, is then counted just once. - _Robert A. Russell_, Sep 25 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A305621.
Equals (A000920 + A056457) / 2 = A000920 - A305626 = A305626 + A056457.

Programs

  • Mathematica
    k=6; Table[(StirlingS2[i,k]+StirlingS2[Ceiling[i/2],k])k!/2,{i,k,30}] (* Robert A. Russell, Nov 25 2017 *)
  • PARI
    a(n) = my(k=6); k!/2*(stirling(n, k, 2) + stirling(ceil(n/2), k, 2)); \\ Altug Alkan, Sep 27 2018

Formula

a(n) = A056308(n) - 6*A032122(n) + 15*A032121(n) - 20*A032120(n) + 15*A005418(n+1) - 6.
G.f.: 360*x^6*(8*x^2 - x - 1)*(90*x^7 - 9*x^6 - 29*x^5 - 34*x^4 + 15*x^3 + 9*x^2 - x - 1)/((x - 1)*(2*x - 1)*(2*x + 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(6*x - 1)*(2*x^2 - 1)*(3*x^2 - 1)*(5*x^2 - 1)*(6*x^2 - 1)). - Colin Barker, Sep 03 2012
a(n) = k! (S2(n,k) + S2(ceiling(n/2),k)) / 2, where k=6 is the number of colors and S2 is the Stirling subset number. - Robert A. Russell, Sep 25 2018

A056317 Number of primitive (aperiodic) reversible strings with n beads using a maximum of six different colors.

Original entry on oeis.org

6, 15, 120, 645, 3990, 23295, 140610, 839790, 5042610, 30232965, 181421850, 1088390415, 6530486970, 39182081385, 235093327980, 1410554953080, 8463334761210, 50779978307010, 304679900238330
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A284871.
Cf. A045625.

Formula

sum mu(d)*A056308(n/d) where d|n.

A320524 Number of chiral pairs of a row of n colors using 6 or fewer colors.

Original entry on oeis.org

0, 15, 90, 630, 3780, 23220, 139320, 839160, 5034960, 30229200, 181375200, 1088367840, 6530207040, 39181942080, 235091652480, 1410554113920, 8463324683520, 50779973295360, 304679839772160, 1828079189798400, 10968475138790400, 65810851739735040, 394865110438410240, 2369190668072417280, 14215144008434503680, 85290864083258757120
Offset: 1

Views

Author

Robert A. Russell, Oct 14 2018

Keywords

Comments

A chiral row is different from its reverse.

Examples

			For a(2)=15, the chiral pairs are the fifteen combinations of six colors taken two at a time, e.g., AB-BA.
		

Crossrefs

Column 6 of A293500.
Cf. A000400 (oriented), A056308 (unoriented), A056452 (achiral).

Programs

  • Magma
    [(6^n - 6^Ceiling(n / 2)) / 2: n in [1..25]]; // Vincenzo Librandi, Oct 15 2018
    
  • Mathematica
    k = 6; Table[(k^n - k^Ceiling[n/2])/2, {n, 1, 30}]
    LinearRecurrence[{6, 6, -36}, {0, 15, 90}, 30]
  • PARI
    m=40; v=concat([0,15,90], vector(m-3)); for(n=4, m, v[n] = 6*v[n-1] +6*v[n-2] -36*v[n-3]); v \\ G. C. Greubel, Oct 17 2018

Formula

a(n) = (k^n - k^ceiling(n/2)) / 2, where k=6 is maximum number of colors.
G.f.: k*x^2*(k-1) / (2*(1-k*x)*(1-k*x^2)), where k=6.
a(n) = (A000400(n) - A056452(n)) / 2 = A000400(n) - A056308(n) = A056308(n) - A056452(n).
Showing 1-6 of 6 results.