A305621
Triangle read by rows: T(n,k) is the number of rows of n colors with exactly k different colors counting chiral pairs as equivalent, i.e., the rows are reversible.
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 1, 8, 18, 12, 1, 18, 78, 120, 60, 1, 34, 273, 780, 900, 360, 1, 70, 921, 4212, 8400, 7560, 2520, 1, 134, 2916, 20424, 63000, 95760, 70560, 20160, 1, 270, 9150, 93360, 417120, 952560, 1164240, 725760, 181440, 1, 526, 28065, 409380, 2551560, 8217720, 14817600, 15120000, 8164800, 1814400, 1, 1054, 85773, 1749780, 14804700, 64615680, 161247240, 239500800, 209563200, 99792000, 19958400
Offset: 1
The triangle begins:
1;
1, 1;
1, 4, 3;
1, 8, 18, 12;
1, 18, 78, 120, 60;
1, 34, 273, 780, 900, 360;
1, 70, 921, 4212, 8400, 7560, 2520;
1, 134, 2916, 20424, 63000, 95760, 70560, 20160;
1, 270, 9150, 93360, 417120, 952560, 1164240, 725760, 181440;
...
For T(3,2)=4, the achiral color rows are ABA and BAB, while the chiral pairs are AAB-BAA and ABB-BBA. For T(3,3)=3, the color rows are all chiral pairs: ABC-CBA, ACB-BCA, and BAC-CAB.
A019538 counts chiral pairs as two, i.e., the rows are not reversible.
-
Table[(k!/2) (StirlingS2[n, k] + StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
-
T(n,k) = {k! * (stirling(n,k,2) + stirling((n+1)\2,k,2)) / 2} \\ Andrew Howroyd, Sep 13 2019
A056330
Number of reversible string structures with n beads using exactly six different colors.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 12, 142, 1346, 11511, 89974, 662674, 4662574, 31724735, 210361046, 1367510326, 8752976610, 55343947975, 346541488998, 2153041587538, 13292844257198, 81652683550119, 499484958151630
Offset: 1
For a(7)=12, the color patterns are ABCDEFA, ABCDEBF, ABCDCEF, AABCDEF, ABACDEF, ABCADEF, ABCDAEF, ABBCDEF, ABCBDEF, ABCDBEF, and ABCCDEF. The first three are achiral. - _Robert A. Russell_, Oct 14 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- Index entries for linear recurrences with constant coefficients, signature (21, -159, 399, 1085, -8085, 9555, 34125, -98644, 5544, 253764, -248724, -136800, 317520, -129600).
-
k=6; Table[(StirlingS2[n,k] + If[EvenQ[n], StirlingS2[n/2+3,6] - 3StirlingS2[n/2+2,6] - 8StirlingS2[n/2+1,6] + 16StirlingS2[n/2,6], 3StirlingS2[(n+5)/2,6] - 17StirlingS2[(n+3)/2,6] + 20StirlingS2[(n+1)/2,6]])/2, {n,30}] (* Robert A. Russell, Oct 14 2018 *)
Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
k = 6; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 30}] (* Robert A. Russell, Oct 14 2018 *)
LinearRecurrence[{21, -159, 399, 1085, -8085, 9555, 34125, -98644, 5544, 253764, -248724, -136800, 317520, -129600}, {0, 0, 0, 0, 0, 1, 12, 142, 1346, 11511, 89974, 662674, 4662574, 31724735}, 40] (* Robert A. Russell, Oct 14 2018 *)
A056322
Number of primitive (aperiodic) reversible strings with n beads using exactly six different colors.
Original entry on oeis.org
0, 0, 0, 0, 0, 360, 7560, 95760, 952560, 8217720, 64615680, 476514720, 3355679880, 22837094280, 151449674040, 984573560880, 6302070915840, 39847410373680, 249509384858160, 1550188402338240, 9570844671217200
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A305626
Number of chiral pairs of rows of n colors with exactly 6 different colors.
Original entry on oeis.org
0, 0, 0, 0, 0, 360, 7560, 95760, 952560, 8217720, 64614960, 476514360, 3355664760, 22837086720, 151449482520, 984573465120, 6302069010720, 39847409421480, 249509368422720, 1550188394120520, 9570844541994120, 58789922099665680, 359629148397511080, 2192484972513916080, 13329510116645202480, 80854267307329446840, 489528474458978944080, 2959252601445086408280, 17866194139995100525080, 107751636988750077294240, 649286502010403671101240
Offset: 1
For a(6) = 360, the chiral pairs are the 6! = 720 permutations of ABCDEF, each paired with its reverse.
A056457(n) is number of achiral rows of n colors with exactly 6 different colors.
-
k=6; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}]
-
a(n) = 360*(stirling(n, 6, 2) - stirling(ceil(n/2), 6, 2)); \\ Altug Alkan, Sep 26 2018
Showing 1-4 of 4 results.
Comments