cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056309 Number of reversible strings with n beads using exactly two different colors.

Original entry on oeis.org

0, 1, 4, 8, 18, 34, 70, 134, 270, 526, 1054, 2078, 4158, 8254, 16510, 32894, 65790, 131326, 262654, 524798, 1049598, 2098174, 4196350, 8390654, 16781310, 33558526, 67117054, 134225918, 268451838, 536887294, 1073774590, 2147516414, 4295032830, 8590000126
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

Examples

			For n=3, the four rows are ABA, BAB, AAB, and ABB, the last two being respectively equivalent to BAA and BBA, with which they form chiral pairs. - _Robert A. Russell_, Sep 25 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Equals (A000918 + A056453) / 2.
a(n) = A000918(n) - A122746(n-2) = A122746(n-2) + A056453(n).

Programs

  • Magma
    [2^(n-1)+2^((n-1) div 2)-2: n in [1..40]]; // Vincenzo Librandi, Sep 29 2018
  • Maple
    seq(2^(n-1) + 2^floor((n-1)/2) - 2, n=1..34); # Peter Luschny, Nov 25 2017
  • Mathematica
    Rest[CoefficientList[Series[x^2(1+x-4x^2)/(1-3x+6x^3-4x^4),{x,0,30}],x]] (* or *) LinearRecurrence[{3,0,-6,4},{0,1,4,8},30] (* Harvey P. Dale, Feb 18 2012 *)
  • PARI
    Vec(x^2*(1+x-4*x^2)/(1-3*x+6*x^3-4*x^4) + O(x^40)) \\ Colin Barker, Nov 24 2017
    
  • PARI
    a(n) = 2^(n-1)+2^((n-1)\2)-2; \\ Altug Alkan, Sep 25 2018
    

Formula

a(n) = A005418(n+1) - 2.
G.f.: x^2*(1 + x - 4*x^2)/(1 - 3*x + 6*x^3 - 4*x^4). - Colin Barker, Feb 03 2012
a(1)=0, a(2)=1, a(3)=4, a(4)=8, a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4). - Harvey P. Dale, Feb 18 2012
From Colin Barker, Nov 24 2017: (Start)
a(n) = 2^(n/2-1) + 2^(n-1) - 2 for n even.
a(n) = 2^((n-1)/2) + 2^(n-1) - 2 for n odd. (End)
a(n) = A000079(n-1) + A056453(n-2). - Peter Luschny, Nov 25 2017
a(n) = k! (S2(n,k) + S2(ceiling(n/2),k)) / 2, where k=2 is the number of colors and S2 is the Stirling subset number. - Robert A. Russell, Sep 25 2018