A122746
G.f.: 1/((1-2*x)*(1-2*x^2)).
Original entry on oeis.org
1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640, 65280, 130816, 261632, 523776, 1047552, 2096128, 4192256, 8386560, 16773120, 33550336, 67100672, 134209536, 268419072, 536854528, 1073709056, 2147450880, 4294901760, 8589869056
Offset: 0
G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 28*x^4 + 56*x^5 + 120*x^6 + 240*x^7 + 496*x^8 + ... - _Michael Somos_, Jul 01 2018
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- S. J. Cyvin et al., Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.
- E. Filiol and C. Fontaine, Highly nonlinear balanced Boolean functions with a good correlation-immunity, Lect. Not. Comp. Sci 1403 (1998), 475-488, NL(F_n).
- Juan B. Gil and Jessica A. Tomasko, Restricted Grassmannian permutations, arXiv:2112.03338 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-4).
-
List([0..35],n->2^(n+1)-2^(QuoInt(n+1,2))); # Muniru A Asiru, Sep 27 2018
-
seq(coeff(series(((1-2*x)*(1-2*x^2))^(-1),x,n+1), x, n), n = 0..35); # Muniru A Asiru, Sep 27 2018
-
RecurrenceTable[{a[n] == 2 (BitOr[a[n - 1], a[n - 2]]), a[0] == 1, a[1] == 2}, a, {n, 0, 32}] (* Geoffrey Critzer, Jan 09 2011 *)
CoefficientList[Series[1/((1-2x)(1-2x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{2,2,-4},{1,2,6},40] (* Harvey P. Dale, Jun 25 2013 *)
Table[(StirlingS2[n,2] - StirlingS2[Floor[n/2]+1,2])/2, {n,3,30}] (* Robert A. Russell, Jan 29 2018 *)
a[ n_] := 2^(n + 1) - 2^Quotient[n + 1, 2]; (* Michael Somos, Jul 01 2018 *)
-
{a(n) = 2^(n+1) - 2^((n+1)\2)}; /* Michael Somos, Jul 01 2018 */
A056326
Number of reversible string structures with n beads using exactly two different colors.
Original entry on oeis.org
0, 1, 2, 5, 9, 19, 35, 71, 135, 271, 527, 1055, 2079, 4159, 8255, 16511, 32895, 65791, 131327, 262655, 524799, 1049599, 2098175, 4196351, 8390655, 16781311, 33558527, 67117055, 134225919, 268451839, 536887295, 1073774591, 2147516415, 4295032831, 8590000127
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
Table[(StirlingS2[n,2] + StirlingS2[Floor[n/2]+1,2])/2, {n,1,30}] (* Robert A. Russell, Jan 29 2018 *)
LinearRecurrence[{3, 0, -6, 4}, {0, 1, 2, 5}, 35] (* or *)
Rest@ CoefficientList[Series[x^2*(x^2 + x - 1)/((x - 1) (2 x - 1) (2 x^2 - 1)), {x, 0, 35}], x] (* Michael De Vlieger, Jan 31 2018 *)
A092431
Numbers having in binary representation a leading 1 followed by n zeros and n-1 ones.
Original entry on oeis.org
2, 9, 35, 135, 527, 2079, 8255, 32895, 131327, 524799, 2098175, 8390655, 33558527, 134225919, 536887295, 2147516415, 8590000127, 34359869439, 137439215615, 549756338175, 2199024304127, 8796095119359, 35184376283135, 140737496743935, 562949970198527
Offset: 1
-
LinearRecurrence[{7, -14, 8}, {2, 9, 35}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
Table[FromDigits[Join[PadRight[{1},n,0],PadRight[{},n-2,1]],2],{n,2,30}]//Sort (* or *) Rest[CoefficientList[Series[x (-2+5x)/((x-1)(2x-1)(4x-1)),{x,0,30}],x]] (* Harvey P. Dale, Jul 30 2021 *)
A305621
Triangle read by rows: T(n,k) is the number of rows of n colors with exactly k different colors counting chiral pairs as equivalent, i.e., the rows are reversible.
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 1, 8, 18, 12, 1, 18, 78, 120, 60, 1, 34, 273, 780, 900, 360, 1, 70, 921, 4212, 8400, 7560, 2520, 1, 134, 2916, 20424, 63000, 95760, 70560, 20160, 1, 270, 9150, 93360, 417120, 952560, 1164240, 725760, 181440, 1, 526, 28065, 409380, 2551560, 8217720, 14817600, 15120000, 8164800, 1814400, 1, 1054, 85773, 1749780, 14804700, 64615680, 161247240, 239500800, 209563200, 99792000, 19958400
Offset: 1
The triangle begins:
1;
1, 1;
1, 4, 3;
1, 8, 18, 12;
1, 18, 78, 120, 60;
1, 34, 273, 780, 900, 360;
1, 70, 921, 4212, 8400, 7560, 2520;
1, 134, 2916, 20424, 63000, 95760, 70560, 20160;
1, 270, 9150, 93360, 417120, 952560, 1164240, 725760, 181440;
...
For T(3,2)=4, the achiral color rows are ABA and BAB, while the chiral pairs are AAB-BAA and ABB-BBA. For T(3,3)=3, the color rows are all chiral pairs: ABC-CBA, ACB-BCA, and BAC-CAB.
A019538 counts chiral pairs as two, i.e., the rows are not reversible.
-
Table[(k!/2) (StirlingS2[n, k] + StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
-
T(n,k) = {k! * (stirling(n,k,2) + stirling((n+1)\2,k,2)) / 2} \\ Andrew Howroyd, Sep 13 2019
A001445
a(n) = (2^n + 2^[ n/2 ] )/2.
Original entry on oeis.org
3, 5, 10, 18, 36, 68, 136, 264, 528, 1040, 2080, 4128, 8256, 16448, 32896, 65664, 131328, 262400, 524800, 1049088, 2098176, 4195328, 8390656, 16779264, 33558528, 67112960, 134225920, 268443648
Offset: 2
G.f. = 3*x^2 + 5*x^3 + 10*x^4 + 18*x^5 + 36*x^6 + 68*x^7 + 136*x^8 + ...
-
f := n->(2^n+2^floor(n/2))/2;
-
Table[(2^n + 2^(Floor[n/2]))/2, {n, 2, 50}] (* G. C. Greubel, Sep 08 2017 *)
LinearRecurrence[{2,2,-4},{3,5,10},30] (* Harvey P. Dale, Sep 12 2021 *)
-
for(n=2,50, print1((2^n + 2^(n\2))/2, ", ")) \\ G. C. Greubel, Sep 08 2017
A056318
Number of primitive (aperiodic) reversible strings with n beads using exactly two different colors.
Original entry on oeis.org
0, 1, 4, 7, 18, 29, 70, 126, 266, 507, 1054, 2037, 4158, 8183, 16488, 32760, 65790, 131026, 262654, 524265, 1049524, 2097119, 4196350, 8388450, 16781292, 33554367, 67116784, 134217657, 268451838
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Showing 1-6 of 6 results.
Comments