A011782
Coefficients of expansion of (1-x)/(1-2*x) in powers of x.
Original entry on oeis.org
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0
Lee D. Killough (killough(AT)wagner.convex.com)
G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 32*x^6 + 64*x^7 + 128*x^8 + ...
( -1 1 -1)
det ( 1 1 1) = 4
( -1 -1 -1)
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
- S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7
- Xavier Merlin, Methodix Algèbre, Ellipses, 1995, p. 153.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Christopher Bao, Yunseo Choi, Katelyn Gan, and Owen Zhang, On a Conjecture by Baril, Cerbai, Khalil, and Vajnovszki on Two Restricted Stacks, arXiv:2308.09344 [math.CO], 2023.
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Christian Bean, Bjarki Gudmundsson, and Henning Ulfarsson, Automatic discovery of structural rules of permutation classes, arXiv:1705.04109 [math.CO], 2017.
- Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 14.
- Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015.
- Johann Cigler, Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials, arXiv:2212.02118 [math.NT], 2022.
- Bishal Deb, Cyclic sieving phenomena via combinatorics of continued fractions, arXiv:2508.13709 [math.CO], 2025. See p. 42.
- Colin Defant and Kai Zheng, Stack-sorting with consecutive-pattern-avoiding stacks, arXiv:2008.12297 [math.CO], 2020.
- John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361 [math.NT], 2016.
- Mareike Fischer, Extremal Values of the Sackin Tree Balance Index, Ann. Comb. (2021) Vol. 25, 515-541, Remark 10.
- Juan B. Gil and Jessica A. Tomasko, Fibonacci colored compositions and applications, arXiv:2108.06462 [math.CO], 2021.
- Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 25.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- Mats Granvik, Alternating powers of 2 as convoluted divisor recurrence
- Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
- Nickolas Hein and Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015-2016. See Table 1.1 p. 2.
- S. Heubach and T. Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003.
- S. Hougardy, Classes of perfect graphs, Discr. Math. 306 (2006), 2529-2571.
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012 (Corollary 3, case k=2, pages 10-11). - From _N. J. A. Sloane_, May 09 2012
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. Also on arXiv, arXiv:1302.2274 [math.CO], 2013.
- Olivia Nabawanda and Fanja Rakotondrajao, The sets of flattened partitions with forbidden patterns, arXiv:2011.07304 [math.CO], 2020.
- R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- L. Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. - From _N. J. A. Sloane_, Jan 03 2013
- Santiago Rojas-Rojas, Camila Muñoz, Edgar Barriga, Pablo Solano, Aldo Delgado, and Carla Hermann-Avigliano, Analytic Evolution for Complex Coupled Tight-Binding Models: Applications to Quantum Light Manipulation, arXiv:2310.12366 [quant-ph], 2023. See p. 12.
- R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985, see pp. 392-393.
- Christoph Wernhard and Wolfgang Bibel, Learning from Łukasiewicz and Meredith: Investigations into Proof Structures (Extended Version), arXiv:2104.13645 [cs.AI], 2021.
- Yan X. Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
- Index entries for sequences related to Boolean functions
- Index to divisibility sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (2).
- Index entries for sequences related to Chebyshev polynomials.
-
a011782 n = a011782_list !! n
a011782_list = 1 : scanl1 (+) a011782_list
-- Reinhard Zumkeller, Jul 21 2013
-
[Floor((1+2^n)/2): n in [0..35]]; // Vincenzo Librandi, Aug 21 2011
-
A011782:= n-> ceil(2^(n-1)): seq(A011782(n), n=0..50); # Wesley Ivan Hurt, Feb 21 2015
with(PolynomialTools): A011782:=seq(coeftayl((1-x)/(1-2*x), x = 0, k),k=0..10^2); # Muniru A Asiru, Sep 26 2017
-
f[s_] := Append[s, Ceiling[Plus @@ s]]; Nest[f, {1}, 32] (* Robert G. Wilson v, Jul 07 2006 *)
CoefficientList[ Series[(1-x)/(1-2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 07 2006 *)
Table[Sum[StirlingS2[n, k], {k,0,2}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *)
Join[{1},NestList[2#&,1,40]] (* Harvey P. Dale, Dec 06 2018 *)
-
{a(n) = if( n<1, n==0, 2^(n-1))};
-
Vec((1-x)/(1-2*x) + O(x^30)) \\ Altug Alkan, Oct 31 2015
-
def A011782(n): return 1 if n == 0 else 2**(n-1) # Chai Wah Wu, May 11 2022
-
[sum(stirling_number2(n,j) for j in (0..2)) for n in (0..35)] # G. C. Greubel, Jun 02 2020
A005418
Number of (n-1)-bead black-white reversible strings; also binary grids; also row sums of Losanitsch's triangle A034851; also number of caterpillar graphs on n+2 vertices.
Original entry on oeis.org
1, 2, 3, 6, 10, 20, 36, 72, 136, 272, 528, 1056, 2080, 4160, 8256, 16512, 32896, 65792, 131328, 262656, 524800, 1049600, 2098176, 4196352, 8390656, 16781312, 33558528, 67117056, 134225920, 268451840, 536887296, 1073774592, 2147516416, 4295032832
Offset: 1
a(5) = 10 because there are 16 compositions of 5 (shown as <vectors>) but only 10 equivalence classes (shown as {sets}): {<5>}, {<4,1>,<1,4>}, {<3,2>,<2,3>}, {<3,1,1>,<1,1,3>}, {<1,3,1>},{<2,2,1>,<1,2,2>}, {<2,1,2>}, {<2,1,1,1>,<1,1,1,2>}, {<1,2,1,1>,<1,1,2,1>}, {<1,1,1,1,1>}. - _Geoffrey Critzer_, Nov 02 2012
G.f. = x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 36*x^7 + 72*x^8 + ... - _Michael Somos_, Jun 24 2018
From _Robert A. Russell_, Oct 28 2018: (Start)
For a(5)=10, the 4 achiral patterns (set partitions) are AAAAA, AABAA, ABABA, and ABBBA. The 6 chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB. The colors are permutable.
For n=4 and a(n+1)=10, the 4 achiral colorings are AAAA, ABBA, BAAB, and BBBB. The 6 achiral pairs are AAAB-BAAA, AABA-ABAA, AABB-BBAA, ABAB-BABA, ABBB-BBBA, and BABB-BBAB. The colors are not permutable. (End)
- K. Balasubramanian, "Combinatorial Enumeration of Chemical Isomers", Indian J. Chem., (1978) vol. 16B, pp. 1094-1096. See page 1095.
- Wayne M. Dymacek, Steinhaus graphs. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 399--412, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561065 (81f:05120)
- Jablan S. and Sazdanovic R., LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
- Joseph S. Madachy: Madachy's Mathematical Recreations. New York: Dover Publications, Inc., 1979, p. 46 (first publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation)
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
- C. A. Pickover, Keys to Infinity, Wiley 1995, p. 75.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- M. Archibald, A. Blecher, A. Knopfmacher, and M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
- Joerg Arndt, Matters Computational (The Fxtbook), pp. 151 and 733.
- Andrei Asinowski and Alon Regev, Triangulations with Few Ears: Symmetry Classes and Disjointness, Integers 16 (2016), #A5.
- A. T. Balaban, Chemical graphs. Part 50. Symmetry and enumeration of fibonacenes (unbranched catacondensed benzenoids isoarithmic with helicenes and zigzag catafusenes), MATCH: Commun. Math. Comput. Chem., 24 (1989) 29-38.
- Allan Bickle, How to Count k-Paths, J. Integer Sequences, 25 (2022) Article 22.5.6.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- A. P. Burger, M. Van Der Merwe, and J. H. Van Vuuren, An asymptotic analysis of the evolutionary spatial prisoner's dilemma on a path, Discrete Appl. Math. 160, No. 15, 2075-2088 (2012), Table 3.1.
- C. Ceballos, F. Santos, and G. Ziegler, Many Non-equivalent Realizations of the Associahedron, arXiv:1109.5544 [math.MG], 2011-2013; pp. 15 and 26.
- P. M. Cohn, Two embedding theorems for Jordan algebras, Proceedings of the London Mathematical Society, Volume s3-9, Issue 4, October 1959, pp. 503-524.
- Jacob Crabtree, Another Enumeration of Caterpillar Trees, arXiv:1810.11744 [math.CO], 2018.
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, E. Brendsdal, Zhang Fuji, Guo Xiaofeng, and R. Tosic, Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.
- Miroslav Marinov Dimitrov, Designing Boolean Functions and Digital Sequences for Cryptology and Communications, Ph. D. Dissertation, Bulgarian Acad. Sci. (Sofia, Bulgaria 2023).
- A. A. Dobrynin, On the Wiener index of fibonacenes, MATCH: Commun. Math. Comput. Chem, 64 (2010), 707-726.
- Vladimir Dotsenko and Irvin Roy Hentzel, On the conjecture of Kashuba and Mathieu about free Jordan algebras, arXiv:2507.00437 [math.RA], 2025. See p. 14.
- J. Eckhoff, Extremal interval graphs, J. Graph Theory 17 1 (1993), 117-127.
- Sahir Gill, Bounds for Region Containing All Zeros of a Complex Polynomial, International Journal of Mathematical Analysis (2018), Vol. 12, No. 7, 325-333.
- T. A. Gittings, Minimum braids: a complete invariant of knots and links, arXiv:math/0401051 [math.GT], 2004. - _N. J. A. Sloane_, Jan 18 2013
- R. K. Guy, Letter to N. J. A. Sloane, Nov 1978.
- Frank Harary and Allen J. Schwenk, The number of caterpillars, Discrete Mathematics, Volume 6, Issue 4, 1973, 359-365.
- N. Hoffman, Binary grids and a related counting problem, Two-Year College Math. J. 9 (1978), 267-272.
- S. V. Jablan, Geometry of Links, XII Yugoslav Geometric Seminar (Novi Sad, 1998), Novi Sad J. Math. 29 (1999), no. 3, 121-139.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- Isaac B. Michael and M. R. Sepanski, Net regular signed trees, Australasian Journal of Combinatorics, Volume 66(2) (2016), 192-204.
- U. N. Peled and F. Sun, Enumeration of difference graphs, Discrete Appl. Math., 60 (1995), 311-318.
- Paulo Renato da Costa Pereira, Lilian Markenzon and Oswaldo Vernet, A clique-difference encoding scheme for labelled k-path graphs, Discrete Appl. Math. 156 (2008), 3216-3222.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Hans Rademacher, On the number of certain types of polyhedra, Illinois Journal of Mathematics 9.3 (1965): 361-380. Reprinted in Coll. Papers, Vol II, MIT Press, 1974, pp. 544-564. See Theorem 8, Eq. 14.3.
- A. Regev, Remarks on two-eared triangulations, arXiv preprint arXiv:1309.0743 [math.CO], 2013-2014.
- Suthee Ruangwises, The Landscape of Computing Symmetric n-Variable Functions with 2n Cards, arXiv:2306.13551 [cs.CR], 2023.
- A. I. Shirshov, On special J-rings, Mat. Sb. (N.S.), 38(80), 1956, pp. 149-166.
- N. J. A. Sloane, Classic Sequences
- R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), Article #00.1.1.
- Eric Weisstein's World of Mathematics, Barker Code.
- Eric Weisstein's World of Mathematics, Bishops Problem.
- Eric Weisstein's World of Mathematics, Caterpillar Graph.
- Eric Weisstein's World of Mathematics, Centipede Graph.
- Eric Weisstein's World of Mathematics, Grid Graph.
- Eric Weisstein's World of Mathematics, Ladder Graph.
- Eric Weisstein's World of Mathematics, Losanitsch's Triangle.
- Eric Weisstein's World of Mathematics, Planar Embedding.
- A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 87 (2014), 1260-1264; see Tables 1 and 2 (and text). - _N. J. A. Sloane_, Mar 26 2015
- Index entries for linear recurrences with constant coefficients, signature (2,2,-4).
Column 2 of
A320750 (set partitions).
Cf.
A131577 (oriented),
A122746(n-3) (chiral),
A016116 (achiral), for set partitions with up to two subsets.
Column 2 of
A277504, offset by one (colors not permutable).
-
a005418 n = sum $ a034851_row (n - 1) -- Reinhard Zumkeller, Jan 14 2012
-
A005418 := n->2^(n-2)+2^(floor(n/2)-1): seq(A005418(n), n=1..34);
-
LinearRecurrence[{2,2,-4}, {1,2,3}, 40] (* or *) Table[2^(n-2)+2^(Floor[n/2]-1), {n,40}] (* Harvey P. Dale, Jan 18 2012 *)
-
A005418(n)= 2^(n-2) + 2^(n\2-1); \\ Joerg Arndt, Sep 16 2013
-
def A005418(n): return 1 if n == 1 else 2**((m:= n//2)-1)*(2**(n-m-1)+1) # Chai Wah Wu, Feb 03 2022
A005329
a(n) = Product_{i=1..n} (2^i - 1). Also called 2-factorial numbers.
Original entry on oeis.org
1, 1, 3, 21, 315, 9765, 615195, 78129765, 19923090075, 10180699028325, 10414855105976475, 21319208401933844325, 87302158405919092510875, 715091979502883286756577125, 11715351900195736886933003038875, 383876935713713710574133710574817125
Offset: 0
G.f. = 1 + x + 3*x^2 + 21*x^3 + 315*x^4 + 9765*x^5 + 615195*x^6 + 78129765*x^7 + ...
- Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadeland, and William B. Jones, Handbook of continued fractions for special functions, Springer, New York, 2008. (see 19.2.1)
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.
- Mark Ronan, Lectures on Buildings (Perspectives in Mathematics; Vol. 7), Academic Press Inc., 1989.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..50
- E. Andresen and K. Kjeldsen, On certain subgraphs of a complete transitively directed graph, Discrete Math., Vol. 14, No. 2 (1976), pp. 103-119.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Eric Weisstein's World of Mathematics, Dominating Set.
- Eric Weisstein's World of Mathematics, q-Factorial.
- Index entries for sequences related to factorial numbers.
Cf.
A000225,
A005321,
A006125,
A114604,
A006088,
A028362,
A027871 (3-fac),
A027872 (5-fac),
A027873 (6-fac),
A048651,
A048652,
A075271,
A075272,
A032085,
A122746.
-
List([0..15],n->Product([1..n],i->2^i-1)); # Muniru A Asiru, May 18 2018
-
[1] cat [&*[ 2^k-1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
-
A005329 := proc(n) option remember; if n<=1 then 1 else (2^n-1)*procname(n-1); end if; end proc: seq(A005329(n), n=0..15);
-
a[0] = 1; a[n_] := a[n] = (2^n-1)*a[n-1]; a /@ Range[0,14] (* Jean-François Alcover, Apr 22 2011 *)
FoldList[Times, 1, 2^Range[15] - 1] (* Harvey P. Dale, Dec 21 2011 *)
Table[QFactorial[n, 2], {n, 0, 14}] (* Arkadiusz Wesolowski, Oct 30 2012 *)
QFactorial[Range[0, 10], 2] (* Eric W. Weisstein, Jul 14 2017 *)
a[ n_] := If[ n < 0, 0, (-1)^n QPochhammer[ 2, 2, n]]; (* Michael Somos, Jan 28 2018 *)
-
a(n)=polcoeff(sum(m=0,n,2^(m*(m+1)/2)*x^m/prod(k=0,m,1+2^k*x+x*O(x^n))),n) \\ Paul D. Hanna, Sep 17 2009
-
Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D
a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+sum(k=1,n,x^k/k!*Dx(k,x*A+x*O(x^n) ))); polcoeff(A,n) \\ Paul D. Hanna, Apr 21 2012
-
{a(n) = if( n<0, 0, prod(k=1, n, 2^k - 1))}; /* Michael Somos, Jan 28 2018 */
-
{a(n) = if( n<0, 0, (-1)^n * sum(k=0, n+1, (-1)^k * 2^(k*(k+1)/2) * prod(j=1, k, (2^(n+1-j) - 1) / (2^j - 1))))}; /* Michael Somos, Jan 28 2018 */
Better definition from Leslie Ann Goldberg (leslie(AT)dcs.warwick.ac.uk), Dec 11 1999
A060546
a(n) = 2^ceiling(n/2).
Original entry on oeis.org
1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152, 2097152
Offset: 0
André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with
A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent:
A029744 (s(n));
A052955 (s(n)-1),
A027383 (s(n)-2),
A354788 (s(n)-3),
A347789 (s(n)-4),
A209721 (s(n)+1),
A209722 (s(n)+2),
A343177 (s(n)+3),
A209723 (s(n)+4);
A060482,
A136252 (minor differences from
A354788 at the start);
A354785 (3*s(n)),
A354789 (3*s(n)-7). The first differences of
A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences:
A016116,
A060546,
A117575,
A131572,
A152166,
A158780,
A163403,
A320770. The bisections of
A029744 are
A000079 and
A007283. -
N. J. A. Sloane, Jul 14 2022
-
[2^Ceiling(n/2): n in [0..50]]; // G. C. Greubel, Nov 07 2018
-
for n from 0 to 100 do printf(`%d,`,2^ceil(n/2)) od:
-
2^Ceiling[Range[0,50]/2] (* or *) Riffle[2^Range[0, 25], 2^Range[25]] (* Harvey P. Dale, Mar 05 2013 *)
LinearRecurrence[{0, 2}, {1, 2}, 40] (* Robert A. Russell, Nov 07 2018 *)
-
a(n) = { 2^ceil(n/2) } \\ Harry J. Smith, Jul 06 2009
A052551
Expansion of 1/((1 - x)*(1 - 2*x^2)).
Original entry on oeis.org
1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, 127, 127, 255, 255, 511, 511, 1023, 1023, 2047, 2047, 4095, 4095, 8191, 8191, 16383, 16383, 32767, 32767, 65535, 65535, 131071, 131071, 262143, 262143, 524287, 524287, 1048575, 1048575, 2097151, 2097151
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 488
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2).
Column 2 (offset by two) of
A304972.
-
Flat(List([1..21],n->[2^n-1,2^n-1])); # Muniru A Asiru, Oct 16 2018
-
[2^Floor(n/2)-1: n in [2..50]]; // Vincenzo Librandi, Aug 16 2011
-
spec := [S,{S=Prod(Sequence(Prod(Z,Union(Z,Z))),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[StirlingS2[Floor[n/2] + 2, 2], {n, 0, 50}] (* Robert A. Russell, Dec 20 2017 *)
Drop[LinearRecurrence[{1, 2, -2}, {0, 1, 1}, 50], 1] (* Robert A. Russell, Oct 14 2018 *)
CoefficientList[Series[1/((1-x)*(1-2*x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 16 2018 *)
2^(1+Floor[(Range[0,50])/2])-1 (* Federico Provvedi, Nov 22 2018 *)
((-1)^#(Sqrt[2]-1)+Sqrt[2]+1)2^((#-1)/2)-1&@Range[0, 50] (* Federico Provvedi, Nov 23 2018 *)
-
x='x+O('x^50); Vec(1/((1-x)*(1-2*x^2))) \\ Altug Alkan, Mar 19 2018
-
[2^(floor(n/2)) -1 for n in (2..50)] # G. C. Greubel, Mar 04 2019
A032085
Number of reversible strings with n beads of 2 colors. If more than 1 bead, not palindromic.
Original entry on oeis.org
2, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640, 65280, 130816, 261632, 523776, 1047552, 2096128, 4192256, 8386560, 16773120, 33550336, 67100672, 134209536, 268419072, 536854528
Offset: 1
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
- C. G. Bower, Transforms (2)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1022
- S. J. Cyvin et al., Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (2,2,-4).
-
[2] cat [2^(n-1)-2^Floor((n-1)/2) : n in [2..40]]; // Wesley Ivan Hurt, Jul 03 2020
-
Join[{2}, LinearRecurrence[{2, 2, -4}, {1, 2, 6}, 29]] (* Jean-François Alcover, Oct 11 2017 *)
-
a(n)=([0,1,0; 0,0,1; -4,2,2]^(n-1)*[2;1;2])[1,1] \\ Charles R Greathouse IV, Oct 21 2022
A350252
Number of non-alternating patterns of length n.
Original entry on oeis.org
0, 0, 1, 7, 53, 439, 4121, 43675, 519249, 6867463, 100228877, 1602238783, 27866817297, 524175098299, 10606844137009, 229807953097903, 5308671596791901, 130261745042452855, 3383732450013895721, 92770140175473602755, 2677110186541556215233
Offset: 0
The a(2) = 1 and a(3) = 7 non-alternating patterns:
(1,1) (1,1,1)
(1,1,2)
(1,2,2)
(1,2,3)
(2,1,1)
(2,2,1)
(3,2,1)
The a(4) = 53 non-alternating patterns:
2112 3124 4123 1112 2134 1234 3112 2113 1123
2211 3214 4213 1211 2314 1243 3123 2123 1213
2212 3412 4312 1212 2341 1324 3211 2213 1223
3421 4321 1221 2413 1342 3212 2311 1231
1222 2431 1423 3213 2312 1232
1432 3312 2313 1233
3321 2321 1312
2331 1321
1322
1323
1332
The weak version for perms of prime indices is
A349797, complement
A349056.
The version for perms of prime indices is
A350251, complement
A345164.
A345163 = normal partitions w/ alternating permutation, complement
A345162.
A349055 = normal multisets w/ alternating permutation, complement
A349050.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&& Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Table[Length[Select[Join@@Permutations/@allnorm[n],!wigQ[#]&]],{n,0,6}]
A305622
Triangle read by rows: T(n,k) is the number of chiral pairs of rows of n colors with exactly k different colors.
Original entry on oeis.org
0, 0, 1, 0, 2, 3, 0, 6, 18, 12, 0, 12, 72, 120, 60, 0, 28, 267, 780, 900, 360, 0, 56, 885, 4188, 8400, 7560, 2520, 0, 120, 2880, 20400, 63000, 95760, 70560, 20160, 0, 240, 9000, 93120, 417000, 952560, 1164240, 725760, 181440, 0, 496, 27915, 409140, 2551440, 8217720, 14817600, 15120000, 8164800, 1814400, 0, 992, 85233, 1748220, 14802900, 64614960, 161247240, 239500800, 209563200, 99792000, 19958400
Offset: 1
The triangle begins:
0;
0, 1;
0, 2, 3;
0, 6, 18, 12;
0, 12, 72, 120, 60;
0, 28, 267, 780, 900, 360;
0, 56, 885, 4188, 8400, 7560, 2520;
0, 120, 2880, 20400, 63000, 95760, 70560, 20160;
0, 240, 9000, 93120, 417000, 952560, 1164240, 725760, 181440;
...
For T(3,2)=2, the chiral pairs are AAB-BAA and ABB-BBA. For T(3,3)=3, the chiral pairs are ABC-CBA, ACB-BCA, and BAC-CAB.
-
with(combinat):
a:=(n,k)->(factorial(k)/2)* (Stirling2(n,k)-Stirling2(ceil(n/2),k)): seq(seq(a(n,k),k=1..n),n=1..11); # Muniru A Asiru, Sep 27 2018
-
Table[(k!/2) (StirlingS2[n, k] - StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
-
T(n,k) = (k!/2) * (stirling(n,k,2) - stirling(ceil(n/2),k,2));
for (n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Sep 27 2018
A320525
Triangle read by rows: T(n,k) = number of chiral pairs of color patterns (set partitions) in a row of length n using exactly k colors (subsets).
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 6, 10, 4, 0, 0, 12, 40, 28, 6, 0, 0, 28, 141, 167, 64, 9, 0, 0, 56, 464, 824, 508, 124, 12, 0, 0, 120, 1480, 3840, 3428, 1300, 220, 16, 0, 0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0, 0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0, 0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0
Offset: 1
Triangle begins with T(1,1):
0;
0, 0;
0, 1, 0;
0, 2, 2, 0;
0, 6, 10, 4, 0;
0, 12, 40, 28, 6, 0;
0, 28, 141, 167, 64, 9, 0;
0, 56, 464, 824, 508, 124, 12, 0;
0, 120, 1480, 3840, 3428, 1300, 220, 16, 0;
0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0;
0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0;
0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0;
...
For T(3,2)=1, the chiral pair is AAB-ABB. For T(4,2)=2, the chiral pairs are AAAB-ABBB and AABA-ABAA. For T(5,2)=6, the chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB.
-
Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 12}, {k, 1, n}] // Flatten
-
\\ here Ach is A304972 as square matrix.
Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M}
T(n)={(matrix(n,n,i,k,stirling(i,k,2)) - Ach(n))/2}
{ my(A=T(10)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 18 2019
A356185
The difference between number of even and number of odd Grassmannian permutations of size n.
Original entry on oeis.org
1, 1, 0, 1, 0, 3, 2, 9, 8, 23, 22, 53, 52, 115, 114, 241, 240, 495, 494, 1005, 1004, 2027, 2026, 4073, 4072, 8167, 8166, 16357, 16356, 32739, 32738, 65505, 65504, 131039, 131038, 262109, 262108, 524251, 524250, 1048537, 1048536, 2097111, 2097110, 4194261, 4194260
Offset: 0
For n=3, 123, 231, 312 are even Grassmann permutations, and 132, 213 are the odd ones. Hence a(3) = 1.
- Juan B. Gil and Jessica A. Tomasko, Restricted Grassmannian permutations, arXiv:2112.03338 [math.CO], 2021.
- Juan B. Gil and Jessica A. Tomasko, Restricted Grassmannian permutations, Enum. Combin. Appl. 2 (2022), no. 4, Article #S4PP6.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,2).
Showing 1-10 of 20 results.
Comments