cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A011782 Coefficients of expansion of (1-x)/(1-2*x) in powers of x.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Lee D. Killough (killough(AT)wagner.convex.com)

Keywords

Comments

Apart from initial term, same as A000079 (powers of 2).
Number of compositions (ordered partitions) of n. - Toby Bartels, Aug 27 2003
Number of ways of putting n unlabeled items into (any number of) labeled boxes where every box contains at least one item. Also "unimodal permutations of n items", i.e., those which rise then fall. (E.g., for three items: ABC, ACB, BCA and CBA are unimodal.) - Henry Bottomley, Jan 17 2001
Number of permutations in S_n avoiding the patterns 213 and 312. - Tuwani Albert Tshifhumulo, Apr 20 2001. More generally (see Simion and Schmidt), the number of permutations in S_n avoiding (i) the 123 and 132 patterns; (ii) the 123 and 213 patterns; (iii) the 132 and 213 patterns; (iv) the 132 and 231 patterns; (v) the 132 and 312 patterns; (vi) the 213 and 231 patterns; (vii) the 213 and 312 patterns; (viii) the 231 and 312 patterns; (ix) the 231 and 321 patterns; (x) the 312 and 321 patterns.
a(n+2) is the number of distinct Boolean functions of n variables under action of symmetric group.
Number of unlabeled (1+2)-free posets. - Detlef Pauly, May 25 2003
Image of the central binomial coefficients A000984 under the Riordan array ((1-x), x*(1-x)). - Paul Barry, Mar 18 2005
Binomial transform of (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...); inverse binomial transform of A007051. - Philippe Deléham, Jul 04 2005
Also, number of rationals in [0, 1) whose binary expansions terminate after n bits. - Brad Chalfan, May 29 2006
Equals row sums of triangle A144157. - Gary W. Adamson, Sep 12 2008
Prepend A089067 with a 1, getting (1, 1, 3, 5, 13, 23, 51, ...) as polcoeff A(x); then (1, 1, 2, 4, 8, 16, ...) = A(x)/A(x^2). - Gary W. Adamson, Feb 18 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 2, 8, 32 and 128, lead to this sequence. For the corner squares these vectors lead to the companion sequence A094373. - Johannes W. Meijer, Aug 15 2010
From Paul Curtz, Jul 20 2011: (Start)
Array T(m,n) = 2*T(m,n-1) + T(m-1,n):
1, 1, 2, 4, 8, 16, ... = a(n)
1, 3, 8, 20, 48, 112, ... = A001792,
1, 5, 18, 56, 160, 432, ... = A001793,
1, 7, 32, 120, 400, 1232, ... = A001794,
1, 9, 50, 220, 840, 2912, ... = A006974, followed with A006975, A006976, gives nonzero coefficients of Chebyshev polynomials of first kind A039991 =
1,
1, 0,
2, 0, -1,
4, 0, -3, 0,
8, 0, -8, 0, 1.
T(m,n) third vertical: 2*n^2, n positive (A001105).
Fourth vertical appears in Janet table even rows, last vertical (A168342 array, A138509, rank 3, 13, = A166911)). (End)
A131577(n) and differences are:
0, 1, 2, 4, 8, 16,
1, 1, 2, 4, 8, 16, = a(n),
0, 1, 2, 4, 8, 16,
1, 1, 2, 4, 8, 16.
Number of 2-color necklaces of length 2n equal to their complemented reversal. For length 2n+1, the number is 0. - David W. Wilson, Jan 01 2012
Edges and also central terms of triangle A198069: a(0) = A198069(0,0) and for n > 0: a(n) = A198069(n,0) = A198069(n,2^n) = A198069(n,2^(n-1)). - Reinhard Zumkeller, May 26 2013
These could be called the composition numbers (see the second comment) since the equivalent sequence for partitions is A000041, the partition numbers. - Omar E. Pol, Aug 28 2013
Number of self conjugate integer partitions with exactly n parts for n>=1. - David Christopher, Aug 18 2014
The sequence is the INVERT transform of (1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...). - Gary W. Adamson, Jul 16 2015
Number of threshold graphs on n nodes [Hougardy]. - Falk Hüffner, Dec 03 2015
Number of ternary words of length n in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017
a(n) is the number of words of length n over an alphabet of two letters, of which one letter appears an even number of times (the empty word of length 0 is included). See the analogous odd number case in A131577, and the Balakrishnan reference in A006516 (the 4-letter odd case), pp. 68-69, problems 2.66, 2.67 and 2.68. - Wolfdieter Lang, Jul 17 2017
Number of D-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are D-equivalent iff the positions of pattern D are identical in these paths. - Sergey Kirgizov, Apr 08 2018
Number of color patterns (set partitions) for an oriented row of length n using two or fewer colors (subsets). Two color patterns are equivalent if we permute the colors. For a(4)=8, the 4 achiral patterns are AAAA, AABB, ABAB, and ABBA; the 4 chiral patterns are the 2 pairs AAAB-ABBB and AABA-ABAA. - Robert A. Russell, Oct 30 2018
The determinant of the symmetric n X n matrix M defined by M(i,j) = (-1)^max(i,j) for 1 <= i,j <= n is equal to a(n) * (-1)^(n*(n+1)/2). - Bernard Schott, Dec 29 2018
For n>=1, a(n) is the number of permutations of length n whose cyclic representations can be written in such a way that when the cycle parentheses are removed what remains is 1 through n in natural order. For example, a(4)=8 since there are exactly 8 permutations of this form, namely, (1 2 3 4), (1)(2 3 4), (1 2)(3 4), (1 2 3)(4), (1)(2)(3 4), (1)(2 3)(4), (1 2)(3)(4), and (1)(2)(3)(4). Our result follows readily by conditioning on k, the number of parentheses pairs of the form ")(" in the cyclic representation. Since there are C(n-1,k) ways to insert these in the cyclic representation and since k runs from 0 to n-1, we obtain a(n) = Sum_{k=0..n-1} C(n-1,k) = 2^(n-1). - Dennis P. Walsh, May 23 2020
Maximum number of preimages that a permutation of length n + 1 can have under the consecutive-231-avoiding stack-sorting map. - Colin Defant, Aug 28 2020
a(n) is the number of occurrences of the empty set {} in the von Neumann ordinals from 0 up to n. Each ordinal k is defined as the set of all smaller ordinals: 0 = {}, 1 = {0}, 2 = {0,1}, etc. Since {} is the foundational element of all ordinals, the total number of times it appears grows as powers of 2. - Kyle Wyonch, Mar 30 2025

Examples

			G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 32*x^6 + 64*x^7 + 128*x^8 + ...
    ( -1   1  -1)
det (  1   1   1)  = 4
    ( -1  -1  -1)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
  • S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7
  • Xavier Merlin, Methodix Algèbre, Ellipses, 1995, p. 153.

Crossrefs

Sequences with g.f.'s of the form ((1-x)/(1-2*x))^k: this sequence (k=1), A045623 (k=2), A058396 (k=3), A062109 (k=4), A169792 (k=5), A169793 (k=6), A169794 (k=7), A169795 (k=8), A169796 (k=9), A169797 (k=10).
Cf. A005418 (unoriented), A122746(n-3) (chiral), A016116 (achiral).
Row sums of triangle A100257.
A row of A160232.
Row 2 of A278984.

Programs

  • Haskell
    a011782 n = a011782_list !! n
    a011782_list = 1 : scanl1 (+) a011782_list
    -- Reinhard Zumkeller, Jul 21 2013
    
  • Magma
    [Floor((1+2^n)/2): n in [0..35]]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    A011782:= n-> ceil(2^(n-1)): seq(A011782(n), n=0..50); # Wesley Ivan Hurt, Feb 21 2015
    with(PolynomialTools):  A011782:=seq(coeftayl((1-x)/(1-2*x), x = 0, k),k=0..10^2); # Muniru A Asiru, Sep 26 2017
  • Mathematica
    f[s_] := Append[s, Ceiling[Plus @@ s]]; Nest[f, {1}, 32] (* Robert G. Wilson v, Jul 07 2006 *)
    CoefficientList[ Series[(1-x)/(1-2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 07 2006 *)
    Table[Sum[StirlingS2[n, k], {k,0,2}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *)
    Join[{1},NestList[2#&,1,40]] (* Harvey P. Dale, Dec 06 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, 2^(n-1))};
    
  • PARI
    Vec((1-x)/(1-2*x) + O(x^30)) \\ Altug Alkan, Oct 31 2015
    
  • Python
    def A011782(n): return 1 if n == 0 else 2**(n-1) # Chai Wah Wu, May 11 2022
  • Sage
    [sum(stirling_number2(n,j) for j in (0..2)) for n in (0..35)] # G. C. Greubel, Jun 02 2020
    

Formula

a(0) = 1, a(n) = 2^(n-1).
G.f.: (1 - x) / (1 - 2*x) = 1 / (1 - x / (1 - x)). - Michael Somos, Apr 18 2012
E.g.f.: cosh(z)*exp(z) = (exp(2*z) + 1)/2.
a(0) = 1 and for n>0, a(n) = sum of all previous terms.
a(n) = Sum_{k=0..n} binomial(n, 2*k). - Paul Barry, Feb 25 2003
a(n) = Sum_{k=0..n} binomial(n,k)*(1+(-1)^k)/2. - Paul Barry, May 27 2003
a(n) = floor((1+2^n)/2). - Toby Bartels (toby+sloane(AT)math.ucr.edu), Aug 27 2003
G.f.: Sum_{i>=0} x^i/(1-x)^i. - Jon Perry, Jul 10 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k+1, n-k)*binomial(2*k, k). - Paul Barry, Mar 18 2005
a(n) = Sum_{k=0..floor(n/2)} A055830(n-k, k). - Philippe Deléham, Oct 22 2006
a(n) = Sum_{k=0..n} A098158(n,k). - Philippe Deléham, Dec 04 2006
G.f.: 1/(1 - (x + x^2 + x^3 + ...)). - Geoffrey Critzer, Aug 30 2008
a(n) = A000079(n) - A131577(n).
a(n) = A173921(A000079(n)). - Reinhard Zumkeller, Mar 04 2010
a(n) = Sum_{k=2^n..2^(n+1)-1} A093873(k)/A093875(k), sums of rows of the full tree of Kepler's harmonic fractions. - Reinhard Zumkeller, Oct 17 2010
E.g.f.: (exp(2*x)+1)/2 = (G(0) + 1)/2; G(k) = 1 + 2*x/(2*k+1 - x*(2*k+1)/(x + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2011
A051049(n) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 18 2012
A008619(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, Apr 18 2012
INVERT transform is A122367. MOBIUS transform is A123707. EULER transform of A059966. PSUM transform is A000079. PSUMSIGN transform is A078008. BINOMIAL transform is A007051. REVERT transform is A105523. A002866(n) = a(n)*n!. - Michael Somos, Apr 18 2012
G.f.: U(0), where U(k) = 1 + x*(k+3) - x*(k+2)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
a(n) = A000041(n) + A056823(n). - Omar E. Pol, Aug 31 2013
E.g.f.: E(0), where E(k) = 1 + x/( 2*k+1 - x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 25 2013
G.f.: 1 + x/(1 + x)*( 1 + 3*x/(1 + 3*x)*( 1 + 5*x/(1 + 5*x)*( 1 + 7*x/(1 + 7*x)*( 1 + ... )))). - Peter Bala, May 27 2017
a(n) = Sum_{k=0..2} stirling2(n, k).
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=2. - Robert A. Russell, Apr 25 2018
a(n) = A053120(n, n), n >= 0, (main diagonal of triangle of Chebyshev's T polynomials). - Wolfdieter Lang, Nov 26 2019

Extensions

Additional comments from Emeric Deutsch, May 14 2001
Typo corrected by Philippe Deléham, Oct 25 2008

A005418 Number of (n-1)-bead black-white reversible strings; also binary grids; also row sums of Losanitsch's triangle A034851; also number of caterpillar graphs on n+2 vertices.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 36, 72, 136, 272, 528, 1056, 2080, 4160, 8256, 16512, 32896, 65792, 131328, 262656, 524800, 1049600, 2098176, 4196352, 8390656, 16781312, 33558528, 67117056, 134225920, 268451840, 536887296, 1073774592, 2147516416, 4295032832
Offset: 1

Views

Author

Keywords

Comments

Equivalently, walks on triangle, visiting n+2 vertices, so length n+1, n "corners"; the symmetry group is S3, reversing a walk does not count as different. Walks are not self-avoiding. - Colin Mallows
Slavik V. Jablan observes that this is also the number of rational knots and links with n+2 crossings (cf. A018240). See reference. [Corrected by Andrey Zabolotskiy, Jun 18 2020]
Number of bit strings of length (n-1), not counting strings which are the end-for-end reversal or the 0-for-1 reversal of each other as different. - Carl Witty (cwitty(AT)newtonlabs.com), Oct 27 2001
The formula given in page 1095 of the Balasubramanian reference can be used to derive this sequence. - Parthasarathy Nambi, May 14 2007
Also number of compositions of n up to direction, where a composition is considered equivalent to its reversal, see example. - Franklin T. Adams-Watters, Oct 24 2009
Number of normally non-isomorphic realizations of the associahedron of type I starting with dimension 2 in Ceballos et al. - Tom Copeland, Oct 19 2011
Number of fibonacenes with n+2 hexagons. See the Balaban and the Dobrynin references. - Emeric Deutsch, Apr 21 2013
From the point of view of binary grids, it is a (1,n)-rectangular grid. A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11. - Yosu Yurramendi, May 19 2013
Number of n-vertex difference graphs (bipartite 2K_2-free graphs) [Peled & Sun, Thm. 9]. - Falk Hüffner, Jan 10 2016
The offset should be 0, since the first row of A034851 is row 0. The name would then be: "Number of n bead...". - Daniel Forgues, Jul 26 2018
a(n) is the number of non-isomorphic generalized rigid ladders with n cells. A generalized rigid ladder with n cells is a graph with vertex set is the union of {u_0, u_1, ..., u_n} and {v_0, v_1, ..., v_n}, and for every 0 <= i <= n-1, the edges are of the form {u_i,u_i+1}, {v_i, v_i+1}, {u_i,v_i} and either {u_i,v_i+1} or {u_i+1,v_i}. - Christian Barrientos, Jul 29 2018
Also number of non-isomorphic stairs with n+1 cells. A stair is a snake polyomino allowing only two directions for adjacent cells: east and north. - Christian Barrientos and Sarah Minion, Jul 29 2018
From Robert A. Russell, Oct 28 2018: (Start)
There are two different unoriented row colorings using two colors that give us very similar results here, a difference of one in the offset. In an unoriented row, chiral pairs are counted as one.
a(n) is the number of color patterns (set partitions) of an unoriented row of length n using two or fewer colors (subsets). Two color patterns are equivalent if the colors are permutable.
a(n+1) is the number of ways to color an unoriented row of length n using two noninterchangeable colors (one need not use both colors).
See the examples below of these two different colorings. (End)
Also arises from the enumeration of types of based polyhedra with exactly two triangular faces [Rademacher]. - N. J. A. Sloane, Apr 24 2020
a(n) is the number of (unlabeled) 2-paths with n+4 vertices. (A 2-path with order n at least 4 can be constructed from a 3-clique by iteratively adding a new 2-leaf (vertex of degree 2) adjacent to an existing 2-clique containing an existing 2-leaf.) - Allan Bickle, Apr 05 2022
a(n) is the number of caterpillars with a perfect matching and order 2n+2. - Christian Barrientos, Sep 12 2023
a(n) is also the number of distinct planar embeddings of the (n+2)-centipede graph (up to at least n=8 and likely for all larger n). - Eric W. Weisstein, May 21 2024
a(n) is also the number of distinct planar embeddings of the 2 X (n+2) grid graph i.e., the (n+2)-ladder graph. - Eric W. Weisstein, May 21 2024
Dimension of the homogeneous component of degree n of the free Jordan algebra on two generators (or, in this case, the free special Jordan algebra on two generators). It follows from (Shirshov 1956, Cohn 1959). - Vladimir Dotsenko, Mar 29 2025

Examples

			a(5) = 10 because there are 16 compositions of 5 (shown as <vectors>) but only 10 equivalence classes (shown as {sets}): {<5>}, {<4,1>,<1,4>}, {<3,2>,<2,3>}, {<3,1,1>,<1,1,3>}, {<1,3,1>},{<2,2,1>,<1,2,2>}, {<2,1,2>}, {<2,1,1,1>,<1,1,1,2>}, {<1,2,1,1>,<1,1,2,1>}, {<1,1,1,1,1>}. - _Geoffrey Critzer_, Nov 02 2012
G.f. = x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 36*x^7 + 72*x^8 + ... - _Michael Somos_, Jun 24 2018
From _Robert A. Russell_, Oct 28 2018: (Start)
For a(5)=10, the 4 achiral patterns (set partitions) are AAAAA, AABAA, ABABA, and ABBBA. The 6 chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB. The colors are permutable.
For n=4 and a(n+1)=10, the 4 achiral colorings are AAAA, ABBA, BAAB, and BBBB. The 6 achiral pairs are AAAB-BAAA, AABA-ABAA, AABB-BBAA, ABAB-BABA, ABBB-BBBA, and BABB-BBAB. The colors are not permutable. (End)
		

References

  • K. Balasubramanian, "Combinatorial Enumeration of Chemical Isomers", Indian J. Chem., (1978) vol. 16B, pp. 1094-1096. See page 1095.
  • Wayne M. Dymacek, Steinhaus graphs. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 399--412, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561065 (81f:05120)
  • Jablan S. and Sazdanovic R., LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
  • Joseph S. Madachy: Madachy's Mathematical Recreations. New York: Dover Publications, Inc., 1979, p. 46 (first publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation)
  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
  • C. A. Pickover, Keys to Infinity, Wiley 1995, p. 75.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A320750 (set partitions).
Cf. A131577 (oriented), A122746(n-3) (chiral), A016116 (achiral), for set partitions with up to two subsets.
Column 2 of A277504, offset by one (colors not permutable).
Cf. A000079 (oriented), A122746(n-2) (chiral), and A060546 (achiral), for a(n+1).

Programs

  • Haskell
    a005418 n = sum $ a034851_row (n - 1) -- Reinhard Zumkeller, Jan 14 2012
    
  • Maple
    A005418 := n->2^(n-2)+2^(floor(n/2)-1): seq(A005418(n), n=1..34);
  • Mathematica
    LinearRecurrence[{2,2,-4}, {1,2,3}, 40] (* or *) Table[2^(n-2)+2^(Floor[n/2]-1), {n,40}] (* Harvey P. Dale, Jan 18 2012 *)
  • PARI
    A005418(n)= 2^(n-2) + 2^(n\2-1); \\ Joerg Arndt, Sep 16 2013
    
  • Python
    def A005418(n): return 1 if n == 1 else 2**((m:= n//2)-1)*(2**(n-m-1)+1) # Chai Wah Wu, Feb 03 2022

Formula

a(n) = 2^(n-2) + 2^(floor(n/2) - 1).
G.f.: -x*(-1 + 3*x^2) / ( (2*x - 1)*(2*x^2 - 1) ). - Simon Plouffe in his 1992 dissertation
G.f.: x*(1+2*x)*(1-3*x^2)/((1-4*x^2)*(1-2*x^2)), not reduced. - Wolfdieter Lang, May 08 2001
a(n) = 6*a(n - 2) - 8*a(n - 4). a(2*n) = A063376(n - 1) = 2*a(2*n - 1); a(2*n + 1) = A007582(n). - Henry Bottomley, Jul 14 2001
a(n+2) = 2*a(n+1) - A077957(n) with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Oct 24 2008
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Jaume Oliver Lafont, Dec 05 2008
Union of A007582 and A161168. Union of A007582 and A063376. - Jaroslav Krizek, Aug 14 2009
G.f.: G(0); G(k) = 1 + 2*x/(1 - x*(1+2^(k+1))/(x*(1+2^(k+1)) + (1+2^k)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 12 2011
a(2*n) = 2*a(2*n-1) and a(2*n+1) = a(2*n) + 4^(n-1) with a(1) = 1. - Johannes W. Meijer, Aug 26 2013
From Robert A. Russell, Oct 28 2018: (Start)
a(n) = (A131577(n) + A016116(n)) / 2 = A131577(n) - A122746(n-3) = A122746(n-3) + A016116(n), for set partitions with up to two subsets.
a(n+1) = (A000079(n) + A060546(n)) / 2 = A000079(n) - A122746(n-2) = A122746(n-2) + A060546(n), for two colors that do not permute.
a(n) = Sum_{j=0..k} (S2(n,j) + Ach(n,j)) / 2, where k=2 is the maximum number of colors, S2(n,k) is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(n+1) = (k^n + k^ceiling(n/2)) / 2, where k=2 is number of colors we can use. (End)
E.g.f.: (cosh(2*x) + 2*cosh(sqrt(2)*x) + sinh(2*x) + sqrt(2)*sinh(sqrt(2)*x) - 3)/4. - Stefano Spezia, Jun 01 2022

A005329 a(n) = Product_{i=1..n} (2^i - 1). Also called 2-factorial numbers.

Original entry on oeis.org

1, 1, 3, 21, 315, 9765, 615195, 78129765, 19923090075, 10180699028325, 10414855105976475, 21319208401933844325, 87302158405919092510875, 715091979502883286756577125, 11715351900195736886933003038875, 383876935713713710574133710574817125
Offset: 0

Views

Author

Keywords

Comments

Conjecture: this sequence is the inverse binomial transform of A075272 or, equivalently, the inverse binomial transform of the BinomialMean transform of A075271. - John W. Layman, Sep 12 2002
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
Number of upper triangular n X n (0,1)-matrices with no zero rows. - Vladeta Jovovic, Mar 10 2008
Equals the q-Fibonacci series for q = (-2), and the series prefaced with a 1: (1, 1, 1, 3, 21, ...) dot (1, -2, 4, -8, ...) if n is even, and (-1, 2, -4, 8, ...) if n is odd. For example, a(3) = 21 = (1, 1, 1, 3) dot (-1, 2, -4, 8) = (-1, 2, -4, 24) and a(4) = 315 = (1, 1, 1, 3, 21) dot (1, -2, 4, -8 16) = (1, -2, 4, -24, 336). - Gary W. Adamson, Apr 17 2009
Number of chambers in an A_n(K) building where K=GF(2) is the field of two elements. This is also the number of maximal flags in an n-dimensional vector space over a field of two elements. - Marcos Spreafico, Mar 22 2012
Given probability p = 1/2^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, A114604(n)/A006125(n+2) = 1-a(n)/A006125(n+1) is the probability that the outcome has occurred up to and including the n-th iteration. The limiting ratio is 1-A048651 ~ 0.7112119. These observations are a more formal and generalized statement of Joshua Zucker's Dec 14, 2005 comment. - Bob Selcoe, Mar 02 2016
Also the number of dominating sets in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Empirical: Letting Q denote the Hall-Littlewood Q basis of the symmetric functions over the field of fractions of the univariate polynomial ring in t over the field of rational numbers, and letting h denote the complete homogeneous basis, a(n) is equal to the absolute value of 2^A000292(n) times the coefficient of h_{1^(n*(n+1)/2)} in Q_{(n, n-1, ..., 1)} with t evaluated at 1/2. - John M. Campbell, Apr 30 2018
The series f(x) = Sum_{n>=0} x^(2^n-1)/a(n) satisfies f'(x) = f(x^2), f(0) = 1. - Lucas Larsen, Jan 05 2022

Examples

			G.f. = 1 + x + 3*x^2 + 21*x^3 + 315*x^4 + 9765*x^5 + 615195*x^6 + 78129765*x^7 + ...
		

References

  • Annie Cuyt, Vigdis Brevik Petersen, Brigitte Verdonk, Haakon Waadeland, and William B. Jones, Handbook of continued fractions for special functions, Springer, New York, 2008. (see 19.2.1)
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.
  • Mark Ronan, Lectures on Buildings (Perspectives in Mathematics; Vol. 7), Academic Press Inc., 1989.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A048651, A079555, A152476 (inverse binomial transform).
Column q=2 of A069777.

Programs

  • GAP
    List([0..15],n->Product([1..n],i->2^i-1)); # Muniru A Asiru, May 18 2018
  • Magma
    [1] cat [&*[ 2^k-1: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Dec 24 2015
    
  • Maple
    A005329 := proc(n) option remember; if n<=1 then 1 else (2^n-1)*procname(n-1); end if; end proc: seq(A005329(n), n=0..15);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (2^n-1)*a[n-1]; a /@ Range[0,14] (* Jean-François Alcover, Apr 22 2011 *)
    FoldList[Times, 1, 2^Range[15] - 1] (* Harvey P. Dale, Dec 21 2011 *)
    Table[QFactorial[n, 2], {n, 0, 14}] (* Arkadiusz Wesolowski, Oct 30 2012 *)
    QFactorial[Range[0, 10], 2] (* Eric W. Weisstein, Jul 14 2017 *)
    a[ n_] := If[ n < 0, 0, (-1)^n QPochhammer[ 2, 2, n]]; (* Michael Somos, Jan 28 2018 *)
  • PARI
    a(n)=polcoeff(sum(m=0,n,2^(m*(m+1)/2)*x^m/prod(k=0,m,1+2^k*x+x*O(x^n))),n) \\ Paul D. Hanna, Sep 17 2009
    
  • PARI
    Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D
    a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+sum(k=1,n,x^k/k!*Dx(k,x*A+x*O(x^n) ))); polcoeff(A,n) \\ Paul D. Hanna, Apr 21 2012
    
  • PARI
    {a(n) = if( n<0, 0, prod(k=1, n, 2^k - 1))}; /* Michael Somos, Jan 28 2018 */
    
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sum(k=0, n+1, (-1)^k * 2^(k*(k+1)/2) * prod(j=1, k, (2^(n+1-j) - 1) / (2^j - 1))))}; /* Michael Somos, Jan 28 2018 */
    

Formula

a(n)/2^(n*(n+1)/2) -> c = 0.2887880950866024212788997219294585937270... (see A048651, A048652).
From Paul D. Hanna, Sep 17 2009: (Start)
G.f.: Sum_{n>=0} 2^(n*(n+1)/2) * x^n / (Product_{k=0..n} (1+2^k*x)).
Compare to: 1 = Sum_{n>=0} 2^(n*(n+1)/2) * x^n/(Product_{k=1..n+1} (1+2^k*x)). (End)
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n/n! * d^n/dx^n x*A(x). - Paul D. Hanna, Apr 21 2012
a(n) = 2^(binomial(n+1,2))*(1/2; 1/2){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 23 2015
a(n) = Product_{i=1..n} A000225(i). - Michel Marcus, Dec 27 2015
From Peter Bala, Nov 10 2017: (Start)
O.g.f. as a continued fraction of Stieltjes' type: A(x) = 1/(1 - x/(1 - 2*x/(1 - 6*x/(1 - 12*x/(1 - 28*x/(1 - 56*x/(1 - ... -(2^n - 2^floor(n/2))*x/(1 - ... )))))))) (follows from Heine's continued fraction for the ratio of two q-hypergeometric series at q = 2. See Cuyt et al. 19.2.1).
A(x) = 1/(1 + x - 2*x/(1 - (2 - 1)^2*x/(1 + x - 2^3*x/(1 - (2^2 - 1)^2*x/(1 + x - 2^5*x/(1 - (2^3 - 1)^2*x/(1 + x - 2^7*x/(1 - (2^4 - 1)^2*x/(1 + x - ... ))))))))). (End)
0 = a(n)*(a(n+1) - a(n+2)) + 2*a(n+1)^2 for all n>=0. - Michael Somos, Feb 23 2019
From Amiram Eldar, Feb 19 2022: (Start)
Sum_{n>=0} 1/a(n) = A079555.
Sum_{n>=0} (-1)^n/a(n) = A048651. (End)

Extensions

Better definition from Leslie Ann Goldberg (leslie(AT)dcs.warwick.ac.uk), Dec 11 1999

A060546 a(n) = 2^ceiling(n/2).

Original entry on oeis.org

1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152, 2097152
Offset: 0

Views

Author

André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001

Keywords

Comments

a(n) is also the number of median-reflective (palindrome) symmetric patterns in a top-down equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.
The number of possibilities for an n-game (sub)set of tennis with neither player gaining a 2-game advantage. (Motivated by the marathon Isner-Mahut match at Wimbledon, 2010.) - Barry Cipra, Jun 28 2010
Number of achiral rows of n colors using up to two colors. For a(3)=4, the rows are AAA, ABA, BAB, and BBB. - Robert A. Russell, Nov 07 2018
Also the number of walks of length n on the graph x--y--z starting at y. - Sean A. Irvine, May 30 2025

Crossrefs

Column k=2 of A321391.
Cf. A000079 (oriented), A005418(n+1) (unoriented), A122746(n-2) (chiral).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Programs

  • Magma
    [2^Ceiling(n/2): n in [0..50]]; // G. C. Greubel, Nov 07 2018
  • Maple
    for n from 0 to 100 do printf(`%d,`,2^ceil(n/2)) od:
  • Mathematica
    2^Ceiling[Range[0,50]/2] (* or *) Riffle[2^Range[0, 25], 2^Range[25]] (* Harvey P. Dale, Mar 05 2013 *)
    LinearRecurrence[{0, 2}, {1, 2}, 40] (* Robert A. Russell, Nov 07 2018 *)
  • PARI
    a(n) = { 2^ceil(n/2) } \\ Harry J. Smith, Jul 06 2009
    

Formula

a(n) = 2^ceiling(n/2).
a(n) = A016116(n+1) for n >= 1.
a(n) = 2^A008619(n-1) for n >= 1.
G.f.: (1 + 2*x) / (1 - 2*x^2). - Ralf Stephan, Jul 15 2013
E.g.f.: cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x). - Stefano Spezia, Feb 02 2023

Extensions

More terms from James Sellers, Apr 04 2001
a(0)=1 prepended by Robert A. Russell, Nov 07 2018
Edited by N. J. A. Sloane, Nov 10 2018

A052551 Expansion of 1/((1 - x)*(1 - 2*x^2)).

Original entry on oeis.org

1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, 127, 127, 255, 255, 511, 511, 1023, 1023, 2047, 2047, 4095, 4095, 8191, 8191, 16383, 16383, 32767, 32767, 65535, 65535, 131071, 131071, 262143, 262143, 524287, 524287, 1048575, 1048575, 2097151, 2097151
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals row sums of triangle A137865. - Gary W. Adamson, Feb 18 2008
Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 05 2017
Number of nonempty subsets of {1,2,...,n+1} that contain only odd numbers. a(0) = a(1) = 1: {1}; a(6) = a(7) = 15: {1}, {3}, {5}, {7}, {1,3}, {1,5}, {1,7}, {3,5}, {3,7}, {5,7}, {1,3,5}, {1,3,7}, {1,5,7}, {3,5,7}, {1,3,5,7}. - Enrique Navarrete, Mar 16 2018
Number of nonempty subsets of {1,2,...,n+2} that contain only even numbers. a(0) = a(1) = 1: {2}; a(4) = a(5) = 7: {2}, {4}, {6}, {2,4}, {2,6}, {4,6}, {2,4,6}. - Enrique Navarrete, Mar 26 2018
Doubling of A000225(n+1), n >= 0 entries. First differences give A077957. - Wolfdieter Lang, Apr 08 2018
a(n-2) is the number of achiral rows or cycles of length n partitioned into two sets or the number of color patterns using exactly 2 colors. An achiral row or cycle is equivalent to its reverse. Two color patterns are equivalent if the colors are permuted. For n = 4, the a(n-2) = 3 row patterns are AABB, ABAB, and ABBA; the cycle patterns are AAAB, AABB, and ABAB. For n = 5, the a(n-2) = 3 patterns for both rows and cycles are AABAA, ABABA, and ABBBA. For n = 6, the a(n-2) = 7 patterns for rows are AAABBB, AABABB, AABBAA, ABAABA, ABABAB, ABBAAB, and ABBBBA; the cycle patterns are AAAAAB, AAAABB, AAABAB, AAABBB, AABAAB, AABABB, and ABABAB. - Robert A. Russell, Oct 15 2018
For integers m > 1, the expansion of 1/((1 - x)*(1 - m*x^2)) generates a(n) = (sqrt(m)^(n + 1)*((-1)^n*(sqrt(m) - 1) + sqrt(m) + 1) - 2)/(2*(m - 1)). It appears, for integer values of n >= 0 and m > 1, that it could be simplified in the integral domain a(n) = (m^(1 + floor(n/2)) - 1)/(m - 1). - Federico Provvedi, Nov 23 2018
From Werner Schulte, Mar 04 2019: (Start)
More generally: For some fixed integers q and r > 0 the expansion of A(q,r; x) = 1/((1-x)*(1-q*x^r)) generates coefficients a(q,r; n) = (q^(1+floor(n/r))-1)/(q-1) for n >= 0; the special case q = 1 leads to a(1,r; n) = 1 + floor(n/r).
The a(q,r; n) satisfy for n > r a linear recurrence equation with constant coefficients. The signature vector is given by the sum of two vectors v and w where v has terms 1 followed by r zeros, i.e., (1,0,0,...,0), and w has r-1 leading zeros followed by q and -q, i.e., (0,0,...,0,q,-q).
Let a_i(q,r; n) be the convolution inverse of a(q,r; n). The terms are given by the sum a_i(q,r; n) = b(n) + c(n) for n >= 0 where b(n) has terms 1 and -1 followed by infinitely zeros, i.e., (1,-1,0,0,0,...), and c(n) has r leading zeros followed by -q, q and infinitely zeros, i.e., (0,0,...,0,-q,q,0,0,0,...).
Here is an example for q = 3 and r = 5: The expansion of A(3,5; x) = 1/((1-x)*(1-3*x^5)) = Sum_{n>=0} a(3,5; n)*x^n generates the sequence of coefficients (a(3,5; n)) = (1,1,1,1,1,4,4,4,4,4,13,13,13,13,13,40,...) where r = 5 controls the repetition and q = 3 the different values.
The a(3,5; n) satisfy for n > 5 the linear recurrence equation with constant coefficients and signature (1,0,0,0,0,0) + (0,0,0,0,3,-3) = (1,0,0,0,3,-3).
The convolution inverse a_i(3,5; n) has terms (1,-1,0,0,0,0,0,0,0,...) + (0,0,0,0,0,-3,3,0,0,...) = (1,-1,0,0,0,-3,3,0,0,...).
For further examples and informations see A014983 (q,r = -3,1), A077925 (q,r = -2,1), A000035 (q,r = -1,1), A000012 (q,r = 0,1), A000027 (q,r = 1,1), A000225 (q,r = 2,1), A003462 (q,r = 3,1), A077953 (q,r = -2,2), A133872 (q,r = -1,2), A004526 (q,r = 1,2), A052551 (this sequence with q,r = 2,2), A077886 (q,r = -2,3), A088911 (q,r = -1,3), A002264 (q,r = 1,3) and A077885 (q,r = 2,3). The offsets might be different.
(End)
a(n) is the number of palindromes of length n over the alphabet {1,2} containing the letter 1. More generally, the number of palindromes of length n over the alphabet {1,2,...,k} containing the letter 1 is given by k^ceiling(n/2)-(k-1)^ceiling(n/2). - Sela Fried, Dec 10 2024

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Column 2 (offset by two) of A304972.
Cf. A000225 (oriented), A056326 (unoriented), and A122746(n-2) (chiral) for rows.
Cf. A056295 (oriented), A056357 (unoriented), and A059053 (chiral) for cycles.

Programs

  • GAP
    Flat(List([1..21],n->[2^n-1,2^n-1])); # Muniru A Asiru, Oct 16 2018
    
  • Magma
    [2^Floor(n/2)-1: n in [2..50]]; // Vincenzo Librandi, Aug 16 2011
    
  • Maple
    spec := [S,{S=Prod(Sequence(Prod(Z,Union(Z,Z))),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[StirlingS2[Floor[n/2] + 2, 2], {n, 0, 50}] (* Robert A. Russell, Dec 20 2017 *)
    Drop[LinearRecurrence[{1, 2, -2}, {0, 1, 1}, 50], 1] (* Robert A. Russell, Oct 14 2018 *)
    CoefficientList[Series[1/((1-x)*(1-2*x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 16 2018 *)
    2^(1+Floor[(Range[0,50])/2])-1 (* Federico Provvedi, Nov 22 2018 *)
    ((-1)^#(Sqrt[2]-1)+Sqrt[2]+1)2^((#-1)/2)-1&@Range[0, 50] (* Federico Provvedi, Nov 23 2018 *)
  • PARI
    x='x+O('x^50); Vec(1/((1-x)*(1-2*x^2))) \\ Altug Alkan, Mar 19 2018
    
  • Sage
    [2^(floor(n/2)) -1 for n in (2..50)] # G. C. Greubel, Mar 04 2019

Formula

G.f.: 1/((1 - x)*(1 - 2*x^2)).
Recurrence: a(1) = 1, a(0) = 1, -2*a(n) - 1 + a(n+2) = 0.
a(n) = -1 + Sum((1/2)*(1 + 2*alpha)*alpha^(-1 - n)) where the sum is over alpha = the two roots of -1 + 2*x^2.
a(n) = A016116(n+2) - 1. - R. J. Mathar, Jun 15 2009
a(n) = A060546(n+1) - 1. - Filip Zaludek, Dec 10 2016
From Robert A. Russell, Oct 15 2018: (Start)
a(n-2) = S2(floor(n/2)+1,2), where S2 is the Stirling subset number A008277.
a(n-2) = 2*A056326(n) - A000225(n) = A000225(n) - 2*A122746(n-2) = A056326(n) - A122746(n-2).
a(n-2) = 2*A056357(n) - A056295(n) = A056295(n) - 2*A059053(n) = A056357(n) - A059053(n). (End)
From Federico Provvedi, Nov 22 2018: (Start)
a(n) = 2^( 1 + floor(n/2) ) - 1.
a(n) = ( (-1)^n*(sqrt(2)-1) + sqrt(2) + 1 ) * 2^( (n - 1)/2 ) - 1. (End)
E.g.f.: 2*cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) - cosh(x) - sinh(x). - Franck Maminirina Ramaharo, Nov 23 2018

Extensions

More terms from James Sellers, Jun 06 2000

A032085 Number of reversible strings with n beads of 2 colors. If more than 1 bead, not palindromic.

Original entry on oeis.org

2, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640, 65280, 130816, 261632, 523776, 1047552, 2096128, 4192256, 8386560, 16773120, 33550336, 67100672, 134209536, 268419072, 536854528
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of induced subgraphs with odd number of edges in the path graph P(n) if n>0. - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 06 2009
A common recurrence of the bisections A020522 and A006516 means a(n+4) = 6*a(n+2) - 8*a(n), n>1. - Yosu Yurramendi, Aug 07 2008
Also, the decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 05 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A005418, A016116. Essentially the same as A122746.
Row sums of triangle A034877.

Programs

Formula

"BHK" (reversible, identity, unlabeled) transform of 2, 0, 0, 0, ...
a(n) = 2^(n-1)-2^floor((n-1)/2), n > 1. - Vladeta Jovovic, Nov 11 2001
G.f.: 2*x+x^2/((1-2*x)*(1-2*x^2)). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 25 2004
a(n) = A005418(n+1)-A016116(n+2), n>1. - Yosu Yurramendi, Aug 07 2008
a(n+1) = A077957(n) + 2*a(n), n>1. a(n+2) = A000079(n+1) + 2*a(n), n>1. - Yosu Yurramendi, Aug 10 2008
First differences: a(n+1)-a(n) = A007179(n) = A156232(n+2)/4, n>1. - Paul Curtz, Nov 16 2009
a(n) = 2*(a(n-1) bitwiseOR a(n-2)), n>3. - Pierre Charland, Dec 12 2010
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Wesley Ivan Hurt, Jul 03 2020

A350252 Number of non-alternating patterns of length n.

Original entry on oeis.org

0, 0, 1, 7, 53, 439, 4121, 43675, 519249, 6867463, 100228877, 1602238783, 27866817297, 524175098299, 10606844137009, 229807953097903, 5308671596791901, 130261745042452855, 3383732450013895721, 92770140175473602755, 2677110186541556215233
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). An alternating pattern is necessarily an anti-run (A005649).
Conjecture: Also the number of non-weakly up/down (or down/up) patterns of length n. For example:
- The a(3) = 7 non-weakly up/down patterns:
(121), (122), (123), (132), (221), (231), (321)
- The a(3) = 7 non-weakly down/up patterns:
(112), (123), (211), (212), (213), (312), (321)
- The a(3) = 7 non-alternating patterns (see example for more):
(111), (112), (122), (123), (211), (221), (321)

Examples

			The a(2) = 1 and a(3) = 7 non-alternating patterns:
  (1,1)  (1,1,1)
         (1,1,2)
         (1,2,2)
         (1,2,3)
         (2,1,1)
         (2,2,1)
         (3,2,1)
The a(4) = 53 non-alternating patterns:
  2112   3124   4123   1112   2134   1234   3112   2113   1123
  2211   3214   4213   1211   2314   1243   3123   2123   1213
  2212   3412   4312   1212   2341   1324   3211   2213   1223
         3421   4321   1221   2413   1342   3212   2311   1231
                       1222   2431   1423   3213   2312   1232
                                     1432   3312   2313   1233
                                            3321   2321   1312
                                                   2331   1321
                                                          1322
                                                          1323
                                                          1332
		

Crossrefs

The unordered version is A122746.
The version for compositions is A345192, ranked by A345168, weak A349053.
The complement is counted by A345194, weak A349058.
The version for factorizations is A348613, complement A348610, weak A350139.
The strict case (permutations) is A348615, complement A001250.
The weak version for partitions is A349061, complement A349060.
The weak version for perms of prime indices is A349797, complement A349056.
The weak version is A350138.
The version for perms of prime indices is A350251, complement A345164.
A000670 = patterns (ranked by A333217).
A003242 = anti-run compositions, complement A261983, ranked by A333489.
A005649 = anti-run patterns, complement A069321.
A019536 = necklace patterns.
A025047/A129852/A129853 = alternating compositions, ranked by A345167.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A345163 = normal partitions w/ alternating permutation, complement A345162.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&& Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!wigQ[#]&]],{n,0,6}]

Formula

a(n) = A000670(n) - A345194(n).

Extensions

Terms a(9) and beyond from Andrew Howroyd, Feb 04 2022

A305622 Triangle read by rows: T(n,k) is the number of chiral pairs of rows of n colors with exactly k different colors.

Original entry on oeis.org

0, 0, 1, 0, 2, 3, 0, 6, 18, 12, 0, 12, 72, 120, 60, 0, 28, 267, 780, 900, 360, 0, 56, 885, 4188, 8400, 7560, 2520, 0, 120, 2880, 20400, 63000, 95760, 70560, 20160, 0, 240, 9000, 93120, 417000, 952560, 1164240, 725760, 181440, 0, 496, 27915, 409140, 2551440, 8217720, 14817600, 15120000, 8164800, 1814400, 0, 992, 85233, 1748220, 14802900, 64614960, 161247240, 239500800, 209563200, 99792000, 19958400
Offset: 1

Views

Author

Robert A. Russell, Jun 06 2018

Keywords

Comments

If the row is achiral, i.e., the same as its reverse, we ignore it. If different from its reverse, we count it and its reverse as a chiral pair.

Examples

			The triangle begins:
  0;
  0,   1;
  0,   2,     3;
  0,   6,    18,     12;
  0,  12,    72,    120,      60;
  0,  28,   267,    780,     900,     360;
  0,  56,   885,   4188,    8400,    7560,     2520;
  0, 120,  2880,  20400,   63000,   95760,    70560,    20160;
  0, 240,  9000,  93120,  417000,  952560,  1164240,   725760,  181440;
  ...
For T(3,2)=2, the chiral pairs are AAB-BAA and ABB-BBA.  For T(3,3)=3, the chiral pairs are ABC-CBA, ACB-BCA, and BAC-CAB.
		

Crossrefs

Columns 1-6 are A000004, A122746(n-2), A305623, A305624, A305625, and A305626.
Row sums are A327091.

Programs

  • Maple
    with(combinat):
    a:=(n,k)->(factorial(k)/2)* (Stirling2(n,k)-Stirling2(ceil(n/2),k)): seq(seq(a(n,k),k=1..n),n=1..11); # Muniru A Asiru, Sep 27 2018
  • Mathematica
    Table[(k!/2) (StirlingS2[n, k] - StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
  • PARI
    T(n,k) = (k!/2) * (stirling(n,k,2) - stirling(ceil(n/2),k,2));
    for (n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Sep 27 2018

Formula

T(n,k) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)) where S2(n,k) is the Stirling subset number A008277.
T(n,k) = (A019538(n,k) - A019538(ceiling(n/2),k)) / 2.
T(n,k) = A019538(n,k) - A305621(n,k).
G.f. for column k: k! x^k / (2*Product_{i=1..k}(1-ix)) - k! (x^(2k-1)+x^(2k)) / (2*Product{i=1..k}(1-i x^2)). - Robert A. Russell, Sep 26 2018
T(n, k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A293500(n, i). - Andrew Howroyd, Sep 13 2019

A320525 Triangle read by rows: T(n,k) = number of chiral pairs of color patterns (set partitions) in a row of length n using exactly k colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 6, 10, 4, 0, 0, 12, 40, 28, 6, 0, 0, 28, 141, 167, 64, 9, 0, 0, 56, 464, 824, 508, 124, 12, 0, 0, 120, 1480, 3840, 3428, 1300, 220, 16, 0, 0, 240, 4600, 16920, 21132, 11316, 2900, 360, 20, 0, 0, 496, 14145, 72655, 123050, 89513, 31846, 5890, 560, 25, 0, 0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0
Offset: 1

Views

Author

Robert A. Russell, Oct 14 2018

Keywords

Comments

Two color patterns are equivalent if we permute the colors. Chiral color patterns must not be equivalent if we reverse the order of the pattern.
If the top entry of the triangle is changed from 0 to 1, this is the number of non-equivalent distinguishing partitions of the path on n vertices (n >= 1) with exactly k parts (1 <= k <= n). - Bahman Ahmadi, Aug 21 2019

Examples

			Triangle begins with T(1,1):
  0;
  0,   0;
  0,   1,     0;
  0,   2,     2,      0;
  0,   6,    10,      4,      0;
  0,  12,    40,     28,      6,      0;
  0,  28,   141,    167,     64,      9,      0;
  0,  56,   464,    824,    508,    124,     12,     0;
  0, 120,  1480,   3840,   3428,   1300,    220,    16,     0;
  0, 240,  4600,  16920,  21132,  11316,   2900,   360,    20,   0;
  0, 496, 14145,  72655, 123050,  89513,  31846,  5890,   560,  25, 0;
  0, 992, 43052, 305140, 688850, 660978, 313190, 79256, 11060, 830, 30, 0;
  ...
For T(3,2)=1, the chiral pair is AAB-ABB.  For T(4,2)=2, the chiral pairs are AAAB-ABBB and AABA-ABAA.  For T(5,2)=6, the chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB.
		

Crossrefs

Columns 1-6 are A000004, A122746(n-2), A320526, A320527, A320528, A320529.
Row sums are A320937.
Cf. A008277 (oriented), A284949 (unoriented), A304972 (achiral).

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Table[(StirlingS2[n, k] - Ach[n, k])/2, {n, 1, 12}, {k, 1, n}] // Flatten
  • PARI
    \\ here Ach is A304972 as square matrix.
    Ach(n)={my(M=matrix(n,n,i,k,i>=k)); for(i=3, n, for(k=2, n, M[i,k]=k*M[i-2,k] + M[i-2,k-1] + if(k>2, M[i-2,k-2]))); M}
    T(n)={(matrix(n,n,i,k,stirling(i,k,2)) - Ach(n))/2}
    { my(A=T(10)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 18 2019

Formula

T(n,k) = (S2(n,k) - A(n,k))/2, where S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
T(n,k) = (A008277(n,k) - A304972(n,k)) / 2 = A008277(n,k) - A284949(n,k) = A284949(n,k) - A304972(n,k).

A356185 The difference between number of even and number of odd Grassmannian permutations of size n.

Original entry on oeis.org

1, 1, 0, 1, 0, 3, 2, 9, 8, 23, 22, 53, 52, 115, 114, 241, 240, 495, 494, 1005, 1004, 2027, 2026, 4073, 4072, 8167, 8166, 16357, 16356, 32739, 32738, 65505, 65504, 131039, 131038, 262109, 262108, 524251, 524250, 1048537, 1048536, 2097111, 2097110, 4194261, 4194260
Offset: 0

Views

Author

Per W. Alexandersson, Jul 28 2022

Keywords

Comments

A permutation is Grassmann if it has at most one descent. A closed-form formula was proved by J. B. Gil and J. A. Tomasko.

Examples

			For n=3, 123, 231, 312 are even Grassmann permutations, and 132, 213 are the odd ones. Hence a(3) = 1.
		

Crossrefs

Bisections give: A005803 (even part), A183155 (odd part).

Programs

  • Mathematica
    Table[2^Floor[1 + (n - 1)/2] - n, {n, 1, 80}]

Formula

a(n) = 2^(1+floor((n-1)/2))-n.
From Alois P. Heinz, Jul 28 2022: (Start)
G.f.: -(4*x^3-3*x^2-x+1)/((2*x^2-1)*(x-1)^2).
a(n) = A000325(n) - A233411(n) = A060546(n) - n = 2^ceiling(n/2) - n.
a(n) = A000325(n) - 2*A032085(n) = A000325(n) - 2*A122746(n-2) for n>=2. (End)
Showing 1-10 of 20 results. Next