A056452 a(n) = 6^floor((n+1)/2).
1, 6, 6, 36, 36, 216, 216, 1296, 1296, 7776, 7776, 46656, 46656, 279936, 279936, 1679616, 1679616, 10077696, 10077696, 60466176, 60466176, 362797056, 362797056, 2176782336, 2176782336, 13060694016, 13060694016, 78364164096
Offset: 0
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (0,6).
Crossrefs
Programs
-
Magma
[6^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
-
Maple
A056452:=n->6^floor((n+1)/2);
-
Mathematica
Riffle[6^Range[0, 20], 6^Range[20]] (* Harvey P. Dale, Jun 18 2017 *) Table[6^Ceiling[n/2], {n,0,40}] (* or *) LinearRecurrence[{0, 6}, {1, 6}, 40] (* Robert A. Russell, Nov 08 2018 *)
Formula
a(n) = 6^floor((n+1)/2).
a(n) = 6*a(n-2). - Colin Barker, May 06 2012
G.f.: (1+6*x) / (1-6*x^2). - Colin Barker, May 06 2012 [Adapted to offset 0 by Robert A. Russell, Nov 08 2018]
Extensions
a(0)=1 prepended by Robert A. Russell, Nov 08 2018
Name corrected by David A. Corneth, Nov 08 2018
Comments