cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056454 Number of palindromes of length n using exactly three different symbols.

Original entry on oeis.org

0, 0, 0, 0, 6, 6, 36, 36, 150, 150, 540, 540, 1806, 1806, 5796, 5796, 18150, 18150, 55980, 55980, 171006, 171006, 519156, 519156, 1569750, 1569750, 4733820, 4733820, 14250606, 14250606, 42850116, 42850116, 128746950, 128746950, 386634060, 386634060, 1160688606
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]

Crossrefs

Programs

  • Magma
    [StirlingSecond((n+1) div 2, 3)*Factorial(3): n in [1..40]]; // Vincenzo Librandi, Sep 26 2018
  • Maple
    A056454:= n-> 3!*Stirling2(floor((n+1)/2),3); # (C. Ronaldo)
  • Mathematica
    LinearRecurrence[{1,5,-5,-6,6},{0,0,0,0,6},40] (* Harvey P. Dale, Sep 02 2016 *)
    k=3; Table[k! StirlingS2[Ceiling[n/2],k],{n,1,30}] (* Robert A. Russell, Sep 25 2018 *)
  • PARI
    a(n) = 3!*stirling((n+1)\2, 3, 2); \\ Altug Alkan, Sep 25 2018
    

Formula

a(n) = 3! * Stirling2( [(n+1)/2], 3).
G.f.: 6*x^5/((1-x)*(1-2*x^2)*(1-3*x^2)). - Colin Barker, May 05 2012
G.f.: k!(x^(2k-1)+x^(2k))/Product_{i=1..k}(1-i*x^2), where k=3 is the number of symbols. - Robert A. Russell, Sep 25 2018