A056450
a(n) = (3*2^n - (-2)^n)/2.
Original entry on oeis.org
1, 4, 4, 16, 16, 64, 64, 256, 256, 1024, 1024, 4096, 4096, 16384, 16384, 65536, 65536, 262144, 262144, 1048576, 1048576, 4194304, 4194304, 16777216, 16777216, 67108864, 67108864, 268435456, 268435456, 1073741824, 1073741824, 4294967296
Offset: 0
At length n=1 there are a(1)=4 palindromes, A, B, C, D.
At length n=2, there are a(2)=4 palindromes, AA, BB, CC, DD.
At length n=3, there are a(3)=16 palindromes, AAA, BBB, CCC, DDD, ABA, BAB, ... , CDC, DCD.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
[ (3*2^n-(-2)^n)/2: n in [0..31] ];
-
[4^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
-
Table[4^Ceiling[n/2], {n,0,40}] (* or *)
CoefficientList[Series[(1 + 4 x)/((1 + 2 x) (1 - 2 x)), {x, 0, 31}], x] (* or *)
LinearRecurrence[{0, 4}, {1, 4}, 40] (* Robert A. Russell, Nov 07 2018 *)
-
a(n)=4^((n+1)\2) \\ Charles R Greathouse IV, Apr 08 2012
-
a(n)=(3*2^n-(-2)^n)/2 \\ Charles R Greathouse IV, Oct 03 2016
A056449
a(n) = 3^floor((n+1)/2).
Original entry on oeis.org
1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467
Offset: 0
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
[3^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
-
Riffle[3^Range[0, 20], 3^Range[20]] (* Harvey P. Dale, Jan 21 2015 *)
Table[3^Ceiling[n/2], {n,0,40}] (* or *)
LinearRecurrence[{0, 3}, {1, 3}, 40] (* Robert A. Russell, Nov 07 2018 *)
-
a(n)=3^floor((n+1)/2); \\ Joerg Arndt, Apr 23 2013
-
def A056449(n): return 3**(n+1>>1) # Chai Wah Wu, Oct 28 2024
A056451
Number of palindromes using a maximum of five different symbols.
Original entry on oeis.org
1, 5, 5, 25, 25, 125, 125, 625, 625, 3125, 3125, 15625, 15625, 78125, 78125, 390625, 390625, 1953125, 1953125, 9765625, 9765625, 48828125, 48828125, 244140625, 244140625, 1220703125, 1220703125, 6103515625, 6103515625, 30517578125, 30517578125, 152587890625, 152587890625
Offset: 0
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
[5^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
-
LinearRecurrence[{0,5},{1,5},30] (* or *) Riffle[5^Range[0, 20], 5^Range[20]] (* Harvey P. Dale, Jul 28 2018 *)
Table[5^Ceiling[n/2], {n,0,40}] (* Robert A. Russell, Nov 07 2018 *)
-
vector(40, n, n--; 5^floor((n+1)/2)) \\ G. C. Greubel, Nov 07 2018
A056452
a(n) = 6^floor((n+1)/2).
Original entry on oeis.org
1, 6, 6, 36, 36, 216, 216, 1296, 1296, 7776, 7776, 46656, 46656, 279936, 279936, 1679616, 1679616, 10077696, 10077696, 60466176, 60466176, 362797056, 362797056, 2176782336, 2176782336, 13060694016, 13060694016, 78364164096
Offset: 0
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
[6^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
-
A056452:=n->6^floor((n+1)/2);
-
Riffle[6^Range[0, 20], 6^Range[20]] (* Harvey P. Dale, Jun 18 2017 *)
Table[6^Ceiling[n/2], {n,0,40}] (* or *)
LinearRecurrence[{0, 6}, {1, 6}, 40] (* Robert A. Russell, Nov 08 2018 *)
A056310
Number of reversible strings with n beads using exactly three different colors.
Original entry on oeis.org
0, 0, 3, 18, 78, 273, 921, 2916, 9150, 28065, 85773, 259848, 785778, 2367813, 7128201, 21427956, 64382550, 193326105, 580372293, 1741847328, 5227116378, 15684323853, 47059266081, 141189861996
Offset: 1
For n=3, the three rows are ABC, ACB, and BAC, being respectively equivalent to CBA, BCA, and CAB, with which they form chiral pairs. - _Robert A. Russell_, Sep 25 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
seq(coeff(series(-3*x^3*(12*x^4-5*x^3-4*x^2+1)/((x-1)*(2*x-1)*(3*x-1)*(2*x^2-1)*(3*x^2-1)),x,n+1), x, n), n = 1..25); # Muniru A Asiru, Sep 27 2018
-
k=3; Table[(StirlingS2[i,k]+StirlingS2[Ceiling[i/2],k])k!/2,{i,k,30}] (* Robert A. Russell, Nov 25 2017 *)
LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 3, 18, 78, 273, 921}, 40] (* Vincenzo Librandi, Sep 27 2018 *)
A056489
Number of periodic palindromes using exactly three different symbols.
Original entry on oeis.org
0, 0, 0, 3, 6, 21, 36, 93, 150, 345, 540, 1173, 1806, 3801, 5796, 11973, 18150, 37065, 55980, 113493, 171006, 345081, 519156, 1044453, 1569750, 3151785, 4733820, 9492213, 14250606, 28550361, 42850116, 85798533, 128746950, 257690505, 386634060, 773661333
Offset: 1
For n=4, the three arrangements are ABAC, ABCB, and ACBC.
For n=5, the six arrangements are AABCB, AACBC, ABACC, ABBAC, ABCCB, and ACBBC.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
a:=[0,0,0,3,6];; for n in [6..40] do a[n]:=a[n-1]+5*a[n-2]-5*a[n-3]-6*a[n-4]+6*a[n-5]; od; a; # Muniru A Asiru, Sep 28 2018
-
seq(coeff(series(3*x^4*(1+x)/((1-x)*(1-2*x^2)*(1-3*x^2)),x,n+1), x, n), n = 1..40); # Muniru A Asiru, Sep 28 2018
-
k = 3; Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] +
StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 40}] (* Robert A. Russell, Jun 05 2018 *)
LinearRecurrence[{1, 5, -5, -6, 6}, {0, 0, 0, 3, 6}, 80] (* Vincenzo Librandi, Sep 27 2018 *)
-
a(n) = my(k=3); (k!/2)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)); \\ Michel Marcus, Jun 05 2018
A056464
Number of primitive (aperiodic) palindromes using exactly three different symbols.
Original entry on oeis.org
0, 0, 0, 0, 6, 6, 36, 36, 150, 144, 540, 534, 1806, 1770, 5790, 5760, 18150, 17994, 55980, 55830, 170970, 170466, 519156, 518580, 1569744, 1567944, 4733670, 4732014, 14250606, 14244660, 42850116, 42844320, 128746410, 128728800
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
with(numtheory):with(combinat,stirling2):A056454:=n->3!*stirling2(floor((n+1)/2),3);A056464:=n->add(mobius(d)*A056454(n/d),d=divisors(n)); # C. Ronaldo
A305623
Number of chiral pairs of rows of n colors with exactly 3 different colors.
Original entry on oeis.org
0, 0, 3, 18, 72, 267, 885, 2880, 9000, 27915, 85233, 259308, 783972, 2366007, 7122405, 21422160, 64364400, 193307955, 580316313, 1741791348, 5226945372, 15684152847, 47058746925, 141189342840, 423593188200, 1270831465995, 3812595048993, 11437991207388, 34314376250772, 102943948309287, 308833455491445, 926503630549920, 2779517334002400, 8338565015656035, 25015720816575273, 75047214375967428
Offset: 1
For a(3) = 3, the chiral pairs are ABC-CBA, ACB-BCA, and BAC-CAB.
A056454(n) is number of achiral rows of n colors with exactly 3 different colors.
-
k=3; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}]
-
a(n) = 3*(stirling(n,3,2)-stirling(ceil(n/2),3,2)); \\ Altug Alkan, Sep 26 2018
A380993
Irregular triangular array read by rows. T(n,k) is the number of ternary words of length n containing at least one copy of each letter and having exactly k inversions, n>=3, 0<=k<=floor(n^2/3).
Original entry on oeis.org
1, 2, 2, 1, 3, 6, 9, 9, 6, 3, 6, 12, 21, 27, 30, 24, 18, 9, 3, 10, 20, 38, 55, 74, 81, 80, 69, 53, 34, 17, 8, 1, 15, 30, 60, 93, 138, 174, 210, 216, 219, 195, 165, 120, 84, 48, 27, 9, 3, 21, 42, 87, 141, 222, 303, 405, 480, 546, 579, 588, 552, 498, 414, 324, 240, 162, 99, 54, 27, 9, 3
Offset: 3
Triangle T(n,k) begins:
1, 2, 2, 1;
3, 6, 9, 9, 6, 3;
6, 12, 21, 27, 30, 24, 18, 9, 3;
10, 20, 38, 55, 74, 81, 80, 69, 53, 34, 17, 8, 1;
...
T(4,2) = 9 because we have: {0, 1, 2, 0}, {0, 2, 0, 1}, {0, 2, 1, 1}, {0, 2, 2, 1}, {1, 0, 0, 2}, {1, 0, 2, 1}, {1, 1, 0, 2}, {1, 2, 0, 2}, {2, 0, 1, 2}.
-
b:= proc(n, l) option remember; `if`(n=0, `if`(nops(subs(0=
[][], l))=3, 1, 0), add(expand(x^([0, l[1], l[1]+l[2]][j])*
b(n-1, subsop(j=`if`(j=3, 1, l[j]+1), l))), j=1..3))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$3])):
seq(T(n), n=3..10); # Alois P. Heinz, Feb 12 2025
-
nn = 8; B[n_] := FunctionExpand[QFactorial[n, u]];
e[z_] := Sum[z^n/B[n], {n, 0, nn}];
Drop[Map[CoefficientList[#, u] &,
Map[Normal[Series[#, {u, 0, Binomial[nn, 2]}]] &,
Table[B[n], {n, 0, nn}] CoefficientList[
Series[(e[z] - 1)^3, {z, 0, nn}], z]]], 3] // Grid
A321434
Triangle read by rows; T(n,k) is the number of achiral rows of n colors using exactly k colors.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 6, 6, 0, 1, 6, 6, 0, 1, 14, 36, 24, 0, 1, 14, 36, 24, 0, 1, 30, 150, 240, 120, 0, 1, 30, 150, 240, 120, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 126, 1806, 8400, 16800, 15120, 5040, 0, 1, 126, 1806, 8400, 16800, 15120, 5040
Offset: 0
The triangle begins with T(0,0):
1
0 1
0 1
0 1 2
0 1 2
0 1 6 6
0 1 6 6
0 1 14 36 24
0 1 14 36 24
0 1 30 150 240 120
0 1 30 150 240 120
0 1 62 540 1560 1800 720
0 1 62 540 1560 1800 720
0 1 126 1806 8400 16800 15120 5040
0 1 126 1806 8400 16800 15120 5040
0 1 254 5796 40824 126000 191520 141120 40320
0 1 254 5796 40824 126000 191520 141120 40320
0 1 510 18150 186480 834120 1905120 2328480 1451520 362880
For T(7,2)=14, the rows are AAABAAA, AABABAA, AABBBAA, ABAAABA, ABABABA, ABBABBA, ABBBBBA, BAAAAAB, BAABAAB, BABABAB, BABBBAB, BBAAABB, BBABABB, and BBBABBB.
-
Table[k! StirlingS2[Ceiling[n/2], k], {n, 0, 18}, {k, 0, (n+1)/2}] // Flatten
Showing 1-10 of 10 results.
Comments