cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A305622 Triangle read by rows: T(n,k) is the number of chiral pairs of rows of n colors with exactly k different colors.

Original entry on oeis.org

0, 0, 1, 0, 2, 3, 0, 6, 18, 12, 0, 12, 72, 120, 60, 0, 28, 267, 780, 900, 360, 0, 56, 885, 4188, 8400, 7560, 2520, 0, 120, 2880, 20400, 63000, 95760, 70560, 20160, 0, 240, 9000, 93120, 417000, 952560, 1164240, 725760, 181440, 0, 496, 27915, 409140, 2551440, 8217720, 14817600, 15120000, 8164800, 1814400, 0, 992, 85233, 1748220, 14802900, 64614960, 161247240, 239500800, 209563200, 99792000, 19958400
Offset: 1

Views

Author

Robert A. Russell, Jun 06 2018

Keywords

Comments

If the row is achiral, i.e., the same as its reverse, we ignore it. If different from its reverse, we count it and its reverse as a chiral pair.

Examples

			The triangle begins:
  0;
  0,   1;
  0,   2,     3;
  0,   6,    18,     12;
  0,  12,    72,    120,      60;
  0,  28,   267,    780,     900,     360;
  0,  56,   885,   4188,    8400,    7560,     2520;
  0, 120,  2880,  20400,   63000,   95760,    70560,    20160;
  0, 240,  9000,  93120,  417000,  952560,  1164240,   725760,  181440;
  ...
For T(3,2)=2, the chiral pairs are AAB-BAA and ABB-BBA.  For T(3,3)=3, the chiral pairs are ABC-CBA, ACB-BCA, and BAC-CAB.
		

Crossrefs

Columns 1-6 are A000004, A122746(n-2), A305623, A305624, A305625, and A305626.
Row sums are A327091.

Programs

  • Maple
    with(combinat):
    a:=(n,k)->(factorial(k)/2)* (Stirling2(n,k)-Stirling2(ceil(n/2),k)): seq(seq(a(n,k),k=1..n),n=1..11); # Muniru A Asiru, Sep 27 2018
  • Mathematica
    Table[(k!/2) (StirlingS2[n, k] - StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
  • PARI
    T(n,k) = (k!/2) * (stirling(n,k,2) - stirling(ceil(n/2),k,2));
    for (n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Sep 27 2018

Formula

T(n,k) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)) where S2(n,k) is the Stirling subset number A008277.
T(n,k) = (A019538(n,k) - A019538(ceiling(n/2),k)) / 2.
T(n,k) = A019538(n,k) - A305621(n,k).
G.f. for column k: k! x^k / (2*Product_{i=1..k}(1-ix)) - k! (x^(2k-1)+x^(2k)) / (2*Product{i=1..k}(1-i x^2)). - Robert A. Russell, Sep 26 2018
T(n, k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A293500(n, i). - Andrew Howroyd, Sep 13 2019

A056310 Number of reversible strings with n beads using exactly three different colors.

Original entry on oeis.org

0, 0, 3, 18, 78, 273, 921, 2916, 9150, 28065, 85773, 259848, 785778, 2367813, 7128201, 21427956, 64382550, 193326105, 580372293, 1741847328, 5227116378, 15684323853, 47059266081, 141189861996
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

Examples

			For n=3, the three rows are ABC, ACB, and BAC, being respectively equivalent to CBA, BCA, and CAB, with which they form chiral pairs. - _Robert A. Russell_, Sep 25 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A305621.
Equals (A001117 + A056454) / 2 = A001117 - A305623 = A305623 + A056454.

Programs

  • Maple
    seq(coeff(series(-3*x^3*(12*x^4-5*x^3-4*x^2+1)/((x-1)*(2*x-1)*(3*x-1)*(2*x^2-1)*(3*x^2-1)),x,n+1), x, n), n = 1..25); # Muniru A Asiru, Sep 27 2018
  • Mathematica
    k=3; Table[(StirlingS2[i,k]+StirlingS2[Ceiling[i/2],k])k!/2,{i,k,30}] (* Robert A. Russell, Nov 25 2017 *)
    LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 3, 18, 78, 273, 921}, 40] (* Vincenzo Librandi, Sep 27 2018 *)

Formula

a(n) = A032120(n) - 3*A005418(n+1) + 3.
G.f.: -3*x^3*(12*x^4 - 5*x^3 - 4*x^2 + 1)/((x - 1)*(2*x - 1)*(3*x - 1)*(2*x^2 - 1)*(3*x^2 - 1)). [Colin Barker, Jul 07 2012]
Showing 1-2 of 2 results.