cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A056487 a(n) = 5^(n/2) for n even, a(n) = 3*5^((n-1)/2) for n odd.

Original entry on oeis.org

1, 3, 5, 15, 25, 75, 125, 375, 625, 1875, 3125, 9375, 15625, 46875, 78125, 234375, 390625, 1171875, 1953125, 5859375, 9765625, 29296875, 48828125, 146484375, 244140625, 732421875, 1220703125, 3662109375, 6103515625, 18310546875, 30517578125, 91552734375
Offset: 0

Views

Author

Keywords

Comments

Apparently identical to A111386! Is this a theorem? - Klaus Brockhaus, Jul 21 2009
For n > 1, number of necklaces with n-1 beads and 5 colors that are the same when turned over and hence have reflection symmetry. - Herbert Kociemba, Nov 24 2016

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

Formula

a(n+2) = 5*a(n), a(0)=1, a(2)=3.
Binomial transform of A087205. Binomial transform is A087206. - Paul Barry, Aug 25 2003
G.f.: (1+3*x)/(1-5*x^2); a(n) = 5^(n/2)(1/2 + 3*sqrt(5)/10 + (1/2 - 3*sqrt(5)/10)(-1)^n). - Paul Barry, Mar 19 2004
2nd inverse binomial transform of Fibonacci(3n+2). - Paul Barry, Apr 16 2004
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = 3^((1 - (-1)^n)/2) * 5^((2*n + (-1)^n-1)/4). - Bruno Berselli, Mar 24 2011
a(n+1) = (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 2, where k=5 is the number of possible colors. - Robert A. Russell, Sep 22 2018
E.g.f.: cosh(sqrt(5)*x) + 3*sinh(sqrt(5)*x)/sqrt(5). - Stefano Spezia, Jun 06 2023

Extensions

Changed one 'even' to 'odd' in the definition. - R. J. Mathar, Oct 06 2010

A074872 Inverse BinomialMean transform of the Fibonacci sequence A000045 (with the initial 0 omitted).

Original entry on oeis.org

1, 1, 5, 5, 25, 25, 125, 125, 625, 625, 3125, 3125, 15625, 15625, 78125, 78125, 390625, 390625, 1953125, 1953125, 9765625, 9765625, 48828125, 48828125, 244140625, 244140625, 1220703125, 1220703125, 6103515625, 6103515625, 30517578125, 30517578125, 152587890625
Offset: 1

Views

Author

John W. Layman, Sep 12 2002

Keywords

Comments

See A075271 for the definition of the BinomialMean transform.
The inverse binomial transform of 2^n*c(n+1), where c(n) is the solution to c(n) = c(n-1) + k*c(n-2), a(0)=0, a(1)=1 is 1, 1, 4k+1, 4k+1, (4k+1)^2, ... - Paul Barry, Feb 12 2004

Crossrefs

Programs

Formula

a(n) = 5^floor((n-1)/2).
a(1)=1, a(2)=1 and, for n > 2, a(n) = 5*a(n-2).
From Paul Barry, Feb 12 2004: (Start)
G.f.: x*(1+x)/(1-5*x^2);
a(n) = (1/(2*sqrt(5))*((1+sqrt(5))*(sqrt(5))^n - (1-sqrt(5))*(-sqrt(5))^n)).
Inverse binomial transform of A063727 (2^n*Fibonacci(n+1)). (End)
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
E.g.f.: (cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x) - 1)/5. - Stefano Spezia, May 24 2024

A032122 Number of reversible strings with n beads of 5 colors.

Original entry on oeis.org

1, 5, 15, 75, 325, 1625, 7875, 39375, 195625, 978125, 4884375, 24421875, 122078125, 610390625, 3051796875, 15258984375, 76294140625, 381470703125, 1907349609375, 9536748046875, 47683720703125
Offset: 0

Views

Author

Keywords

Examples

			For a(2)=15, the five achiral strings are AA, BB, CC, DD, and EE; the 10 (equivalent) chiral pairs are AB-BA, AC-CA, AD-DA, AE-EA, BC-CB, BD-DB, BE-EB, CD-DC, CE-EC, and DE-ED.
		

Crossrefs

Column 5 of A277504.
Cf. A000351 (oriented), A032088(n>1) (chiral), A056451 (achiral).

Programs

  • Magma
    I:=[1, 5, 15]; [n le 3 select I[n] else 5*Self(n-1)+ 5*Self(n-2)-25*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 31 2012
    
  • Mathematica
    LinearRecurrence[{5, 5, -25}, {1, 5, 15}, 31] (* Vincenzo Librandi, Jan 31 2012 *)
    k=5; Table[(k^n+k^Ceiling[n/2])/2,{n,0,30}] (*Robert A. Russell, Nov 25 2017*)
  • PARI
    a(n)=(5^((n+1)\2)+5^n)/2 \\ Charles R Greathouse IV, Jan 31 2012

Formula

"BIK" (reversible, indistinct, unlabeled) transform of 5, 0, 0, 0...
a(n) = 1/2 * (5^n + 5^floor((n+1)/2)) = 5*A001447(n+1). - Ralf Stephan, Jul 07 2003
G.f.: (1-15*x^2) / ((1-5*x)*(1-5*x^2)). - Colin Barker, Jan 30 2012 [Adapted to offset 0 by Robert A. Russell, Nov 10 2018]
a(n) = 5*a(n-1) + 5*a(n-2) - 25*a(n-3). - Vincenzo Librandi, Jan 31 2012
a(n) = (A000351(n) + A056451(n)) / 2. - Robert A. Russell, Nov 10 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 10 2018

A056456 Number of palindromes of length n using exactly five different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 120, 120, 1800, 1800, 16800, 16800, 126000, 126000, 834120, 834120, 5103000, 5103000, 29607600, 29607600, 165528000, 165528000, 901020120, 901020120, 4809004200, 4809004200, 25292030400
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]

Crossrefs

Programs

  • Mathematica
    k=5; Table[k! StirlingS2[Ceiling[n/2],k],{n,1,30}] (* Robert A. Russell, Sep 25 2018 *)
    LinearRecurrence[{1, 14, -14, -71, 71, 154, -154, -120, 120}, {0, 0, 0, 0, 0, 0, 0, 0, 120}, 30] (* Vincenzo Librandi, Sep 29 2018 *)
  • PARI
    a(n) = 5!*stirling((n+1)\2, 5, 2); \\ Altug Alkan, Sep 25 2018

Formula

a(n) = 5! * Stirling2( [(n+1)/2], 5).
G.f.: -120*x^9/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)). - Colin Barker, Sep 03 2012
G.f.: k!(x^(2k-1)+x^(2k))/Product_{i=1..k}(1-ix^2), where k=5 is the number of symbols. - Robert A. Russell, Sep 25 2018

A321391 Array read by antidiagonals: T(n,k) is the number of achiral rows of n colors using up to k colors.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 3, 4, 1, 0, 1, 5, 4, 9, 4, 1, 0, 1, 6, 5, 16, 9, 8, 1, 0, 1, 7, 6, 25, 16, 27, 8, 1, 0, 1, 8, 7, 36, 25, 64, 27, 16, 1, 0, 1, 9, 8, 49, 36, 125, 64, 81, 16, 1, 0, 1, 10, 9, 64, 49, 216, 125, 256, 81, 32, 1, 0
Offset: 0

Views

Author

Robert A. Russell, Nov 08 2018

Keywords

Comments

The antidiagonals go from top-right to bottom-left.

Examples

			The array begins with T(0,0):
1 1  1   1    1     1     1      1      1      1       1       1 ...
0 1  2   3    4     5     6      7      8      9      10      11 ...
0 1  2   3    4     5     6      7      8      9      10      11 ...
0 1  4   9   16    25    36     49     64     81     100     121 ...
0 1  4   9   16    25    36     49     64     81     100     121 ...
0 1  8  27   64   125   216    343    512    729    1000    1331 ...
0 1  8  27   64   125   216    343    512    729    1000    1331 ...
0 1 16  81  256   625  1296   2401   4096   6561   10000   14641 ...
0 1 16  81  256   625  1296   2401   4096   6561   10000   14641 ...
0 1 32 243 1024  3125  7776  16807  32768  59049  100000  161051 ...
0 1 32 243 1024  3125  7776  16807  32768  59049  100000  161051 ...
0 1 64 729 4096 15625 46656 117649 262144 531441 1000000 1771561 ...
For T(3,3)=9, the rows are AAA, ABA, ACA, BAB, BBB, BCB, CAC, CBC, and CCC.
		

Crossrefs

Cf. A003992 (oriented), A277504 (unoriented), A293500 (chiral).

Programs

  • Mathematica
    Table[If[n>0, (n-k)^Ceiling[k/2], 1], {n, 0, 12}, {k, 0, n}] // Flatten

Formula

T(n,k) = [n==0] + [n>0] * k^ceiling(n/2).
The generating function for column k is (1+k*x) / (1-k*x^2).

A032088 Number of reversible strings with n beads of 5 colors. If more than 1 bead, not palindromic.

Original entry on oeis.org

5, 10, 50, 300, 1500, 7750, 38750, 195000, 975000, 4881250, 24406250, 122062500, 610312500, 3051718750, 15258593750, 76293750000, 381468750000, 1907347656250, 9536738281250, 47683710937500
Offset: 1

Views

Author

Keywords

Crossrefs

Column 5 of A293500 for n>1.
Cf. A032122.
Equals (A000351 - A056451) / 2 for n>1.

Programs

  • Mathematica
    Join[{5}, LinearRecurrence[{5, 5, -25}, {10, 50, 300}, 19]] (* Jean-François Alcover, Oct 11 2017 *)
  • PARI
    a(n) = if(n<2, [5][n], (5^n - 5^(ceil(n/2)))/2); \\ Andrew Howroyd, Oct 10 2017

Formula

"BHK" (reversible, identity, unlabeled) transform of 5, 0, 0, 0, ...
Conjectures from Colin Barker, Jul 07 2012: (Start)
a(n) = 5*a(n-1) + 5*a(n-2) - 25*a(n-3) for n > 4.
G.f.: 5*x*(1 - 3*x - 5*x^2 + 25*x^3)/((1 - 5*x)*(1 - 5*x^2)).
(End)
Conjectures from Colin Barker, Mar 09 2017: (Start)
a(n) = 5^(n/2)*(5^(n/2) - 1) / 2 for n > 1 and even.
a(n) = -5*(5^(n/2-1/2) - 5^(n-1)) / 2 for n > 1 and odd.
(End)
The above conjectures are true: The second set follows from the definition and the first set can be derived from that. - Andrew Howroyd, Oct 10 2017
a(n) = (5^n - 5^(ceiling(n/2))) / 2 = (A000351(n) - A056451(n)) / 2 for n>1. - Robert A. Russell and Danny Rorabaugh, Jun 22 2018

A056470 Number of palindromic structures using a maximum of five different symbols.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 15, 15, 52, 52, 202, 202, 855, 855, 3845, 3845, 18002, 18002, 86472, 86472, 422005, 422005, 2079475, 2079475, 10306752, 10306752, 51263942, 51263942, 255514355, 255514355, 1275163905
Offset: 1

Views

Author

Keywords

Comments

Permuting the symbols will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A056451.

Programs

  • Mathematica
    LinearRecurrence[{1,10,-10,-31,31,30,-30},{1,1,2,2,5,5,15},40] (* Harvey P. Dale, Dec 16 2017 *)

Formula

a(2n-1) = a(2n) = A056272(n). [R. J. Mathar, Nov 24 2010]
G.f.: -x*(19*x^6-24*x^4+9*x^2-1) / ((x-1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)). [Colin Barker, Dec 05 2012]

A056461 Number of primitive (aperiodic) palindromes using a maximum of five different symbols.

Original entry on oeis.org

5, 0, 20, 20, 120, 100, 620, 600, 3100, 3000, 15620, 15480, 78120, 77500, 390480, 390000, 1953120, 1949900, 9765620, 9762480, 48827480, 48812500, 244140620, 244124400, 1220703000, 1220625000, 6103512500, 6103437480, 30517578120, 30517184400, 152587890620, 152587500000
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A284823.

Programs

  • PARI
    a(n) = sumdiv(n, d, moebius(d)*5^((1 + n/d)\2));
    for(n=1, 40, print1(a(n), ", ")); \\ Petros Hadjicostas, Apr 24 2020

Formula

Sum_{d|n} mu(d)*A056451(n/d).

Extensions

More terms from Petros Hadjicostas, Apr 24 2020

A240437 Number of non-palindromic n-tuples of 5 distinct elements.

Original entry on oeis.org

0, 20, 100, 600, 3000, 15500, 77500, 390000, 1950000, 9762500, 48812500, 244125000, 1220625000, 6103437500, 30517187500, 152587500000, 762937500000, 3814695312500, 19073476562500, 95367421875000, 476837109375000, 2384185742187500, 11920928710937500, 59604644531250000, 298023222656250000
Offset: 1

Views

Author

Mikk Heidemaa, Aug 17 2014

Keywords

Examples

			For n=3 a(3)=100 solutions are:
{0,0,1}, {0,0,2}, {0,0,3}, {0,0,4}, {0,1,1}, {0,1,2}, {0,1,3}, {0,1,4},
{0,2,1}, {0,2,2}, {0,2,3}, {0,2,4}, {0,3,1}, {0,3,2}, {0,3,3}, {0,3,4},
{0,4,1}, {0,4,2}, {0,4,3}, {0,4,4}, {1,0,0}, {1,0,2}, {1,0,3}, {1,0,4},
{1,1,0}, {1,1,2}, {1,1,3}, {1,1,4}, {1,2,0}, {1,2,2}, {1,2,3}, {1,2,4},
{1,3,0}, {1,3,2}, {1,3,3}, {1,3,4}, {1,4,0}, {1,4,2}, {1,4,3}, {1,4,4},
{2,0,0}, {2,0,1}, {2,0,3}, {2,0,4}, {2,1,0}, {2,1,1}, {2,1,3}, {2,1,4},
{2,2,0}, {2,2,1}, {2,2,3}, {2,2,4}, {2,3,0}, {2,3,1}, {2,3,3}, {2,3,4},
{2,4,0}, {2,4,1}, {2,4,3}, {2,4,4}, {3,0,0}, {3,0,1}, {3,0,2}, {3,0,4},
{3,1,0}, {3,1,1}, {3,1,2}, {3,1,4}, {3,2,0}, {3,2,1}, {3,2,2}, {3,2,4},
{3,3,0}, {3,3,1}, {3,3,2}, {3,3,4}, {3,4,0}, {3,4,1}, {3,4,2}, {3,4,4},
{4,0,0}, {4,0,1}, {4,0,2}, {4,0,3}, {4,1,0}, {4,1,1}, {4,1,2}, {4,1,3},
{4,2,0}, {4,2,1}, {4,2,2}, {4,2,3}, {4,3,0}, {4,3,1}, {4,3,2}, {4,3,3},
{4,4,0}, {4,4,1}, {4,4,2}, {4,4,3}.
		

Crossrefs

Programs

  • Maple
    gf := (20*x^2) / (1 - 5*x - 5*x^2 + 25*x^3): ser := series(gf, x, 26):
    seq(coeff(ser,x,n), n=1..25); # Peter Luschny, May 13 2019
  • Mathematica
    Table[1/2 * 5^(n/2) * ((Sqrt[5]-1) * (-1)^n - Sqrt[5]-1) + 5^n, {n, 25}]
  • PARI
    concat([0], Vec( ( (20*x^2) / (1 - 5*x - 5*x^2 + 25*x^3) + O(x^30) ) ) ) \\ Joerg Arndt, Aug 18 2014

Formula

a(n) = 1/2 * 5^(n/2) * ((sqrt(5)-1) * (-1)^n - sqrt(5)-1) + 5^n.
a(n) = 5^n - 5^ceiling(n/2).
a(n) = A000351(n) - A056451(n).
G.f.: (20*x^2) / (1 - 5*x - 5*x^2 + 25*x^3). [corrected by Peter Luschny, May 13 2019]

A162962 a(n) = 5*a(n-2) for n > 2; a(1) = 1, a(2) = 5.

Original entry on oeis.org

1, 5, 5, 25, 25, 125, 125, 625, 625, 3125, 3125, 15625, 15625, 78125, 78125, 390625, 390625, 1953125, 1953125, 9765625, 9765625, 48828125, 48828125, 244140625, 244140625, 1220703125, 1220703125, 6103515625, 6103515625, 30517578125
Offset: 1

Views

Author

Klaus Brockhaus, Jul 19 2009

Keywords

Comments

Apparently a(n) = A074872(n+1), a(n) = A056451(n-1) for n > 1.
Binomial transform is A084057 without initial 1, second binomial transform is A048876, third binomial transform is A082762, fourth binomial transform is A162769, fifth binomial transform is A093145 without initial 0.

Crossrefs

Cf. A000351 (powers of 5), A074872 (powers of 5 repeated), A056451 (5^floor((n+1)/2)), A084057, A048876, A082762, A162769, A093145.

Programs

  • Magma
    [ n le 2 select 4*n-3 else 5*Self(n-2): n in [1..30] ];
  • Mathematica
    LinearRecurrence[{0,5},{1,5},30] (* Harvey P. Dale, Mar 18 2023 *)

Formula

a(n) = 5^((1/4)*(2*n-1+(-1)^n)).
G.f.: x*(1+5*x)/(1-5*x^2).
Showing 1-10 of 10 results.