cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A056451 Number of palindromes using a maximum of five different symbols.

Original entry on oeis.org

1, 5, 5, 25, 25, 125, 125, 625, 625, 3125, 3125, 15625, 15625, 78125, 78125, 390625, 390625, 1953125, 1953125, 9765625, 9765625, 48828125, 48828125, 244140625, 244140625, 1220703125, 1220703125, 6103515625, 6103515625, 30517578125, 30517578125, 152587890625, 152587890625
Offset: 0

Views

Author

Keywords

Comments

Number of achiral rows of n colors using up to five colors. For a(3) = 25, the rows are AAA, ABA, ACA, ADA, AEA, BAB, BBB, BCB, BDB, BEB, CAC, CBC, CCC, CDC, CEC, DAD, DBD, DCD, DDD, DED, EAE, EBE, ECE, EDE, and EEE. - Robert A. Russell, Nov 09 2018

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column k=5 of A321391.
Cf. A000351 (oriented), A032122 (unoriented), A032088(n>1) (chiral).

Programs

  • Magma
    [5^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
    
  • Mathematica
    LinearRecurrence[{0,5},{1,5},30] (* or *) Riffle[5^Range[0, 20], 5^Range[20]] (* Harvey P. Dale, Jul 28 2018 *)
    Table[5^Ceiling[n/2], {n,0,40}] (* Robert A. Russell, Nov 07 2018 *)
  • PARI
    vector(40, n, n--; 5^floor((n+1)/2)) \\ G. C. Greubel, Nov 07 2018

Formula

a(n) = 5^floor((n+1)/2).
a(n) = 5*a(n-2). - Colin Barker, May 06 2012
G.f.: (1+5*x) / (1-5*x^2). - Colin Barker, May 06 2012 [Adapted to offset 0 by Robert A. Russell, Nov 07 2018]
a(n) = C(5,0)*A000007(n) + C(5,1)*A057427(n) + C(5,2)*A056453(n) + C(5,3)*A056454(n) + C(5,4)*A056455(n) + C(5,5)*A056456(n). - Robert A. Russell, Nov 08 2018
E.g.f.: cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x). - Stefano Spezia, Jun 06 2023

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 07 2018

A056452 a(n) = 6^floor((n+1)/2).

Original entry on oeis.org

1, 6, 6, 36, 36, 216, 216, 1296, 1296, 7776, 7776, 46656, 46656, 279936, 279936, 1679616, 1679616, 10077696, 10077696, 60466176, 60466176, 362797056, 362797056, 2176782336, 2176782336, 13060694016, 13060694016, 78364164096
Offset: 0

Views

Author

Keywords

Comments

Number of achiral rows of length n using up to six different colors. For a(3) = 36, the rows are AAA, ABA, ACA, ADA, AEA, AFA, BAB, BBB, BCB, BDB, BEB, BFB, CAC, CBC, CCC, CDC, CEC, CFC, DAD, DBD, DCD, DDD, DED, DFD, EAE, EBE, ECE, EDE, EEE, EFE, FAF, FBF, FCF, FDF, FEF, and FFF. - Robert A. Russell, Nov 08 2018
Also: a(n) is the number of palindromes with n digits using a maximum of six different symbols. - David A. Corneth, Nov 09 2018

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column k=6 of A321391.
Cf. A016116.
Cf. A000400 (oriented), A056308 (unoriented), A320524 (chiral).

Programs

  • Magma
    [6^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
  • Maple
    A056452:=n->6^floor((n+1)/2);
  • Mathematica
    Riffle[6^Range[0, 20], 6^Range[20]] (* Harvey P. Dale, Jun 18 2017 *)
    Table[6^Ceiling[n/2], {n,0,40}] (* or *)
    LinearRecurrence[{0, 6}, {1, 6}, 40] (* Robert A. Russell, Nov 08 2018 *)

Formula

a(n) = 6^floor((n+1)/2).
a(n) = 6*a(n-2). - Colin Barker, May 06 2012
G.f.: (1+6*x) / (1-6*x^2). - Colin Barker, May 06 2012 [Adapted to offset 0 by Robert A. Russell, Nov 08 2018]
a(n) = C(6,0)*A000007(n) + C(6,1)*A057427(n) + C(6,2)*A056453(n) + C(6,3)*A056454(n) + C(6,4)*A056455(n) + C(6,5)*A056456(n) + C(6,6)*A056457(n). - Robert A. Russell, Nov 08 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 08 2018
Name corrected by David A. Corneth, Nov 08 2018

A056312 Number of reversible strings with n beads using exactly five different colors.

Original entry on oeis.org

0, 0, 0, 0, 60, 900, 8400, 63000, 417120, 2551560, 14804700, 82764900, 450518460, 2404510500, 12646078200, 65771496000, 339165516120, 1737486149760, 8855359634100, 44952367981500, 227475768907860, 1148269329527100, 5785013373810000, 29100047092479000
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

Examples

			For n=5, the 60 rows are 60 permutations of ABCDE that do not include any mutual reversals.  Each of the 60 chiral pairs, such as ABCDE-EDCBA, is then counted just once.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A305621.
Equals (A001118 + A056456) / 2 = A001118 - A305625 = A305625 + A056456.

Programs

  • Magma
    [60*(StirlingSecond(n, 5)+StirlingSecond(Ceiling(n/2), 5)): n in [1..30]]; // Vincenzo Librandi, Sep 30 2018
  • Mathematica
    k=5; Table[(StirlingS2[i,k]+StirlingS2[Ceiling[i/2],k])k!/2,{i,30}] (* Robert A. Russell, Nov 25 2017 *) adapted
    CoefficientList[Series[-60*x^4*(120*x^7 - 17*x^6 - 50*x^5 - 32*x^4 + 20*x^3 + 10*x^2 - 2*x - 1)/((x - 1)*(2*x - 1)*(2*x + 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(2*x^2 - 1)*(3*x^2 - 1)*(5*x^2 - 1)), {x, 0, 30}], x] (* Stefano Spezia, Sep 29 2018 *)
  • PARI
    a(n) = 60*(stirling(n, 5, 2) + stirling(ceil(n/2), 5, 2)); \\ Altug Alkan, Sep 27 2018
    

Formula

a(n) = A032122(n) - 5*A032121(n) + 10*A032120(n) - 10*A005418(n+1) + 5.
G.f.: -60*x^5*(120*x^7 - 17*x^6 - 50*x^5 - 32*x^4 + 20*x^3 + 10*x^2 - 2*x - 1)/((x - 1)*(2*x - 1)*(2*x + 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(2*x^2 - 1)*(3*x^2 - 1)*(5*x^2 - 1)). [Colin Barker, Sep 03 2012]
a(n) = k! (S2(n,k) + S2(ceiling(n/2),k)) / 2, where k=5 is the number of colors and S2 is the Stirling subset number. - Robert A. Russell, Sep 25 2018

A056491 Number of periodic palindromes using exactly five different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 60, 120, 960, 1800, 9300, 16800, 71400, 126000, 480060, 834120, 2968560, 5103000, 17355300, 29607600, 97567800, 165528000, 533274060, 901020120, 2855012160, 4809004200, 15050517300, 25292030400, 78417448200, 131542866000, 404936532060
Offset: 1

Views

Author

Keywords

Examples

			For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
There are 120 permutations of the five letters used in ABACDEDC.  These 120 arrangements can be paired up with a half turn (e.g., ABACDEDC-DEDCABAC) to arrive at the 60 arrangements for n=8. - _Robert A. Russell_, Sep 26 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A056456.
Column 5 of A305540.

Programs

  • GAP
    a:=[0,0,0,0,0,0,0,60,120];; for n in [10..35] do a[n]:=a[n-1]+14*a[n-2]-14*a[n-3]-71*a[n-4]+71*a[n-5]+154*a[n-6]-154*a[n-7]-120*a[n-8]+120*a[n-9]; od; a; # Muniru A Asiru, Sep 26 2018
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0, 0, 0, 0, 0, 0, 0] cat Coefficients(R!(-60*x^8*(x+1)/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)))); // G. C. Greubel, Oct 13 2018
  • Maple
    with(combinat):  a:=n->(factorial(5)/2)*(Stirling2(floor((n+1)/2),5)+Stirling2(ceil((n+1)/2),5)): seq(a(n),n=1..35); # Muniru A Asiru, Sep 26 2018
  • Mathematica
    k = 5; Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] +
    StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 40}] (* Robert A. Russell, Jun 05 2018 *)
    LinearRecurrence[{1, 14, -14, -71, 71, 154, -154, -120, 120}, {0, 0,
    0, 0, 0, 0, 0, 60, 120}, 40] (* Robert A. Russell, Sep 29 2018 *)
  • PARI
    a(n) = my(k=5); (k!/2)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)); \\ Michel Marcus, Jun 05 2018
    

Formula

a(n) = 2*A056345(n) - A056285(n).
G.f.: -60*x^8*(x+1)/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)). - Colin Barker, Jul 08 2012
a(n) = (k!/2)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)), with k=5 different colors used and where S2(n,k) is the Stirling subset number A008277. - Robert A. Russell, Jun 05 2018
a(n) = a(n-1) + 14*a(n-2) - 14*a(n-3) - 71*a(n-4) + 71*a(n-5) + 154*a(n-6) - 154*a(n-7) - 120*a(n-8) + 120*a(n-9). - Muniru A Asiru, Sep 26 2018

A056466 Number of primitive (aperiodic) palindromes using exactly five different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 120, 120, 1800, 1800, 16800, 16800, 126000, 126000, 834120, 834000, 5103000, 5102880, 29607600, 29605800, 165528000, 165526200, 901020120, 901003320, 4809004080, 4808987400, 25292030400, 25291904280, 131542866000, 131542740000
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A327873.

Formula

a(n) = Sum_{d|n} mu(d)*A056456(n/d).

Extensions

Terms a(30) and beyond from Andrew Howroyd, Sep 29 2019

A305625 Number of chiral pairs of rows of n colors with exactly 5 different colors.

Original entry on oeis.org

0, 0, 0, 0, 60, 900, 8400, 63000, 417000, 2551440, 14802900, 82763100, 450501660, 2404493700, 12645952200, 65771370000, 339164682000, 1737485315640, 8855354531100, 44952362878500, 227475739300260, 1148269299919500, 5785013208282000, 29100046926951000, 146201097996135000, 733811769167043840, 3680292427100043300, 18446421887430345900, 92412024657725026860, 462780012983867889300, 2316780309783100387800
Offset: 1

Views

Author

Robert A. Russell, Jun 06 2018

Keywords

Comments

If the row is achiral, i.e., the same as its reverse, we ignore it. If different from its reverse, we count it and its reverse as a chiral pair.

Examples

			For a(5) = 60, the chiral pairs are the 5! = 120 permutations of ABCDE, each paired with its reverse.
		

Crossrefs

Fifth column of A305622.
A056456(n) is number of achiral rows of n colors with exactly 5 different colors.

Programs

  • Mathematica
    k=5; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}]
  • PARI
    a(n) = 60*(stirling(n, 5, 2) - stirling(ceil(n/2), 5, 2)); \\ Altug Alkan, Sep 26 2018

Formula

a(n) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)), with k=5 colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A001118(n) - A056456(n)) / 2.
a(n) = A001118(n) - A056312(n) = A056312(n) - A056456(n).
G.f.: -(k!/2) * (x^(2k-1) + x^(2k)) / Product_{j=1..k} (1 - j*x^2) + (k!/2) * x^k / Product_{j=1..k} (1 - j*x) with k=5 colors used.

A321434 Triangle read by rows; T(n,k) is the number of achiral rows of n colors using exactly k colors.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 6, 6, 0, 1, 6, 6, 0, 1, 14, 36, 24, 0, 1, 14, 36, 24, 0, 1, 30, 150, 240, 120, 0, 1, 30, 150, 240, 120, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 126, 1806, 8400, 16800, 15120, 5040, 0, 1, 126, 1806, 8400, 16800, 15120, 5040
Offset: 0

Views

Author

Robert A. Russell, Nov 09 2018

Keywords

Comments

Each zero in the data is the beginning of a new row.
Same as A131689, with rows (except for the first) repeated. - Joerg Arndt, Sep 08 2019

Examples

			The triangle begins with T(0,0):
1
0 1
0 1
0 1   2
0 1   2
0 1   6     6
0 1   6     6
0 1  14    36     24
0 1  14    36     24
0 1  30   150    240    120
0 1  30   150    240    120
0 1  62   540   1560   1800    720
0 1  62   540   1560   1800    720
0 1 126  1806   8400  16800   15120    5040
0 1 126  1806   8400  16800   15120    5040
0 1 254  5796  40824 126000  191520  141120   40320
0 1 254  5796  40824 126000  191520  141120   40320
0 1 510 18150 186480 834120 1905120 2328480 1451520 362880
For T(7,2)=14, the rows are AAABAAA, AABABAA, AABBBAA, ABAAABA, ABABABA, ABBABBA, ABBBBBA, BAAAAAB, BAABAAB, BABABAB, BABBBAB, BBAAABB, BBABABB, and BBBABBB.
		

Crossrefs

Cf. A019538 (oriented), A305621 (unoriented), A305622 (chiral).
Cf. A131689.

Programs

  • Mathematica
    Table[k! StirlingS2[Ceiling[n/2], k], {n, 0, 18}, {k, 0, (n+1)/2}] // Flatten

Formula

T(n,k) = k!*S2(ceiling(n/2),k), where S2 is the Stirling subset number A008277.
Showing 1-7 of 7 results.