cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A051159 Triangle read by rows: T(n, k) = binomial(n mod 2, k mod 2) * binomial(n div 2, k div 2), where 'div' denotes integer division.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 3, 0, 3, 0, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 0, 4, 0, 6, 0, 4, 0, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1, 1, 1, 5, 5, 10, 10, 10, 10, 5, 5, 1, 1, 1, 0, 6, 0, 15, 0, 20, 0, 15, 0, 6, 0, 1, 1, 1, 6, 6, 15, 15, 20, 20, 15, 15, 6, 6, 1, 1
Offset: 0

Views

Author

Michael Somos, Oct 14 1999

Keywords

Comments

Previous name: Triangular array made of three copies of Pascal's triangle.
Computing each term modulo 2 also gives A047999, i.e., a(n) mod 2 = A007318(n) mod 2 for all n. (The triangle is paritywise isomorphic to Pascal's Triangle.) - Antti Karttunen
5th row/column gives entries of A000217 (triangular numbers C(n+1,2)) repeated twice and every other entry in 6th row/column form A000217. 7th row/column gives entries of A000292 (Tetrahedral (or pyramidal) nos: C(n+3,3)) repeated twice and every other entry in 8th row/column form A000292. 9th row/column gives entries of A000332 (binomial coefficients binomial(n,4)) repeated twice and every other entry in 10th row/column form A000332. 11th row/column gives entries of A000389 (binomial coefficients C(n,5)) repeated twice and every other entry in 12th row/column form A000389. - Gerald McGarvey, Aug 21 2004
If Sum_{k=0..n} A(k)*T(n,k) = B(n), the sequence B is the S-D transform of the sequence A. - Philippe Deléham, Aug 02 2006
Number of n-bead black-white reversible strings with k black beads; also binary grids; string is palindromic. - Yosu Yurramendi, Aug 07 2008
Row sums give A016116(n+1). - Yosu Yurramendi, Aug 07 2008 [corrected by Petros Hadjicostas, Nov 04 2017]
Coefficients in expansion of (x + y)^n where x and y anticommute (y x = -x y), that is, q-binomial coefficients when q = -1. - Michael Somos, Feb 16 2009
The sequence of coefficients of a general polynomial recursion that links at w=2 to the Pascal triangle is here w=0. Row sums are {1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, ...}. - Roger L. Bagula and Gary W. Adamson, Dec 04 2009
T(n,k) is the number of palindromic compositions of n+1 with exactly k+1 parts. T(6,4) = 3 because we have the following compositions of n+1=7 with length k+1=5: 1+1+3+1+1, 2+1+1+1+2, 1+2+1+2+1. - Geoffrey Critzer, Mar 15 2014 [corrected by Petros Hadjicostas, Nov 03 2017]
Let P(n,k) be the number of palindromic compositions of n with exactly k parts. MacMahon (1893) was the first to prove that P(n,k) = T(n-1,k-1), where T(n,k) are the numbers in this sequence (see the comment above by G. Critzer). He actually proved that, for 1 <= s <= m, we have P(2*m,2*s) = P(2*m,2*s-1) = P(2*m-1, 2*s-1) = bin(m-1, s-1), but P(2*m-1, 2*s) = 0. For the current sequence, this can be translated into T(2*m-1, 2*s-1) = T(2*m-1,2*s-2) = T(2*m-2, 2*s-2) = bin(m-1,s-1), but T(2m-2, 2*s-1) = 0 (valid again for 1 <= s <= m). - Petros Hadjicostas, Nov 03 2017
T is the infinite lower triangular matrix for this sequence; define two others, U and V; let U(n,k)=e_k(-1,2,-3,...,(-1)^n n), where e_k is the k-th elementary symmetric polynomial, and let V be the diagonal matrix A057077 (periodic sequence 1,1,-1,-1). Clearly V^-1 = V. Conjecture: U = U^-1, T = U . V, T^-1 = V . U, and |T| = |U|. - George Beck, Dec 16 2017
Let T*(n,k)=T(n,k) except when n is odd and k=(n+1)/2, where T*(n,k) = T(n,k)+2^((n-1)/2). Thus, T*(n,k) is the number of non-isomorphic symmetric stairs with n cells and k steps, i.e., k-1 changes of direction. See A016116. - Christian Barrientos and Sarah Minion, Jul 29 2018

Examples

			Triangle starts:
{1},
{1,  1},
{1,  0,  1},
{1,  1,  1,  1},
{1,  0,  2,  0,  1},
{1,  1,  2,  2,  1,  1},
{1,  0,  3,  0,  3,  0,  1},
{1,  1,  3,  3,  3,  3,  1,  1},
{1,  0,  4,  0,  6,  0,  4,  0,  1},
{1,  1,  4,  4,  6,  6,  4,  4,  1,  1},
{1,  0,  5,  0, 10,  0, 10,  0,  5,  0,  1},
{1,  1,  5,  5, 10, 10, 10, 10,  5,  5,  1,  1}
... - _Roger L. Bagula_ and _Gary W. Adamson_, Dec 04 2009
		

Crossrefs

Programs

  • Haskell
    a051159 n k = a051159_tabl !! n !! k
    a051159_row n = a051159_tabl !! n
    a051159_tabl = [1] : f [1] [1,1] where
       f us vs = vs : f vs (zipWith (+) ([0,0] ++ us) (us ++ [0,0]))
    -- Reinhard Zumkeller, Apr 25 2013
    
  • Maple
    T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
          `if`(n<0 or k<0, 0, `if`(irem(n, 2)=1 or
           irem(k, 2)=0, T(n-1, k-1) + T(n-1, k), 0)))
        end:
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Jul 12 2014
  • Mathematica
    T[ n_, k_] := QBinomial[n, k, -1]; (* Michael Somos, Jun 14 2011; since V7 *)
    Clear[p, n, x, a]
    w = 0;
    p[x, 1] := 1;
    p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + w*x + 1)^Floor[n/2]]
    a = Table[CoefficientList[p[x, n], x], {n, 1, 12}]
    Flatten[a] (* Roger L. Bagula and Gary W. Adamson, Dec 04 2009 *)
  • PARI
    {T(n, k) = binomial(n%2, k%2) * binomial(n\2, k\2)};
    
  • Python
    from math import comb as binomial
    def T(n, k): return binomial(n%2, k%2) * binomial(n//2, k//2)
    print([T(n, k) for n in range(14) for k in range(n+1)])  # Peter Luschny, Oct 17 2024
  • SageMath
    @cached_function
    def T(n, k):
        if k == 0 or k == n: return 1
        return T(n-1, k-1) + (-1)^k*T(n-1, k)
    for n in (0..12): print([T(n, k) for k in (0..n)]) # Peter Luschny, Jul 06 2021
    

Formula

T(n, k) = T(n-1, k-1) + T(n-1, k) if n odd or k even, else 0. T(0, 0) = 1.
T(n, k) = T(n-2, k-2) + T(n-2, k). T(0, 0) = T(1, 0) = T(1, 1) = 1.
Square array made by setting first row/column to 1's (A(i, 0) = A(0, j) = 1); A(1, 1) = 0; A(1, j) = A(1, j-2); A(i, 1) = A(i-2, 1); other entries A(i, j) = A(i-2, j) + A(i, j-2). - Gerald McGarvey, Aug 21 2004
Sum_{k=0..n} k * T(n,k) = A093968(n); A093968 = S-D transform of A001477. - Philippe Deléham, Aug 02 2006
Equals 2*A034851 - A007318. - Gary W. Adamson, Dec 31 2007. [Corrected by Yosu Yurramendi, Aug 07 2008]
A051160(n, k) = (-1)^floor(k/2) * T(n, k).
Sum_{k = 0..n} T(n,k)*x^k = A000012(n), A016116(n+1), A056487(n), A136859(n+2) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Mar 11 2014
G.f.: (1+x+x*y)/(1-x^2-y^2*x^2). - Philippe Deléham, Mar 11 2014
For n,k >= 1, T(n, k) = 0 when n odd and k even; otherwise, T(n, k) = binomial(floor((n-1)/2), floor((k-1)/2)). - Christian Barrientos, Mar 14 2020
From Werner Schulte, Jun 25 2021: (Start)
T(n,k) = T(n-1,k-1) + (-1)^k * T(n-1,k) for 0 < k < n with initial values T(n,0) = T(n,n) = 1 for n >= 0.
Matrix inverse is T^-1(n,k) = (-1)^((n-k)*(n+k+1)/2) * T(n,k) for 0 <= k <= n. (End)
From Peter Bala, Aug 08 2021: (Start)
Double Riordan array ( 1/(1 - x); x/(1 + x), x/(1 - x) ) in the notation of Davenport et al.
G.f. for column 2*n: (1 + x)*x^(2*n)/(1 - x^2)^(n+1); G.f. for column 2*n+1: x^(2*n+1)/(1 - x^2)^(n+1)
Row polynomials: R(2*n,x) = (1 + x^2)^n; R(2*n+1,x) = (1 + x)*(1 + x^2)^n.
The infinitesimal generator of this triangle has the sequence [1, 0, 1, 0, 1, 0, ...] on the main subdiagonal, the sequence [1, 1, 2, 2, 3, 3, 4, 4, ...] on the diagonal immediately below and zeros elsewhere.
Let T denote this lower triangular array. Then T^a, for a in C, is the double Riordan array ( (1 + a*x)/(1 - a*x^2); x/(1 + a*x), (1 + a*x)/(1 - a*x^2) ) with o.g.f. (1 + x*(a + y))/(1 - x^2*(a + y^2)) = 1 + (a + y)*x + (a + y^2)*x^2 + (a^2 + a*y + a*y^2 + y^3)*x^3 + (a^2 + 2*a*y^2 + y^4)*x^4 + ....
The (2*n)-th row polynomial of T^a is (a + y^2)^n; The (2*n+1)-th row polynomial of T^a is (a + y)*(a + y^2)^n. (End)

Extensions

New name using a formula of the author by Peter Luschny, Oct 17 2024

A284855 Array read by antidiagonals: T(n,k) = number of necklaces with n beads and k colors that are the same when turned over.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 9, 6, 1, 6, 15, 16, 18, 8, 1, 7, 21, 25, 40, 27, 12, 1, 8, 28, 36, 75, 64, 54, 16, 1, 9, 36, 49, 126, 125, 160, 81, 24, 1, 10, 45, 64, 196, 216, 375, 256, 162, 32, 1, 11, 55, 81, 288, 343, 756, 625, 640, 243, 48, 1
Offset: 1

Views

Author

Andrew Howroyd, Apr 04 2017

Keywords

Comments

Number of periodic palindromes of length n using a maximum of k different symbols.
From Petros Hadjicostas, Sep 02 2018: (Start)
According to Christian Bower's theory of transforms, we have boxes of different sizes and different colors. The size of a box is determined by the number of balls it can hold. In this case, we assume all balls are the same and are unlabeled. Assume also that the number of possible colors a box with m balls can have is given by c(m). We place the boxes on a circle at equal distances from each other. Two configurations of boxes on the circle are considered equivalent if one can be obtained from the other by rotation. We are interested about circular configurations of boxes that are circular palindromes (i.e., necklaces with boxes that are the same when turned over). Let b(n) be the number of circularly palindromic configurations of boxes on a circle when the total number of balls in the boxes is n (and each box contains at least one ball).
Bower calls the sequence (b(n): n >= 1), the CPAL ("circular palindrome") transform of the input sequence (c(m): m >= 1). If the g.f. of the input sequence (c(m): m >= 1) is C(x) = Sum_{m>=1} c(m)*x^m, then the g.f. of the output sequence (b(n): n >= 1) is B(x) = Sum_{n >= 1} b(n)*x^n = (1 + C(x))^2/(2*(1 - C(x^2))) - 1/2.
In the current sequence, each box holds only one ball but can have one of k colors. Hence, c(1) = k but c(m) = 0 for m >= 2. Thus, C(x) = k*x. Then, for fixed k, the output sequence is (b(n): n >= 1) = (T(n, k): n >= 1), where T(n, k) = number of necklaces with n beads and k colors that are the same when turned over. If we let B_k(x) = Sum_{n>=1} T(n, k)*x^n, then B_k(x) = (1 + k*x)^2/(2*(1 - k*x^2)) - 1/2. From this, we can easily prove the formulae below.
Note that T(n, k=2) - 1 is the total number of Sommerville symmetric cyclic compositions of n. See pp. 301-304 in his paper in the links below. To see why this is the case, we use MacMahon's method of representing a cyclic composition of n with a necklace of 2 colors (see p. 273 in Sommerville's paper where the two "colors" are an x and a dot . rather than B and W). Given a Sommerville symmetrical composition b_1 + ... + b_r of n (with b_i >= 1 for all i and 1 <= r <= n), create the following circularly palindromic necklace with n beads of 2 colors: Start with a B bead somewhere on the circle and place b_1 - 1 W beads to the right of it; place a B bead to the right of the W beads (if any) followed by b_2 - 1 W beads; and so on. At the end, place a B bead followed with b_r - 1 W beads. (If b_i = 1 for some i, then a B bead follows a B bead since there are 0 W beads between them.) We thus get a circularly palindromic necklace with n beads of two colors. (The only necklace we cannot get with this method is the one than has all n beads colored W.)
It is interesting that the representation of a necklace of length n, say s_1, s_2, ..., s_n, as a periodic sequence (..., s_{-2}, s_{-1}, s_0, s_1, s_2, ...) with the property s_i = s_{i+n} for all i, as was done by Marks R. Nester in Chapter 2 of his 1999 PhD thesis, was considered by Sommerville in his 1909 paper (in the very first paragraph of his paper). (End)

Examples

			Table starts:
1  2   3    4    5     6     7      8      9     10 ...
1  3   6   10   15    21    28     36     45     55 ...
1  4   9   16   25    36    49     64     81    100 ...
1  6  18   40   75   126   196    288    405    550 ...
1  8  27   64  125   216   343    512    729   1000 ...
1 12  54  160  375   756  1372   2304   3645   5500 ...
1 16  81  256  625  1296  2401   4096   6561  10000 ...
1 24 162  640 1875  4536  9604  18432  32805  55000 ...
1 32 243 1024 3125  7776 16807  32768  59049 100000 ...
1 48 486 2560 9375 27216 67228 147456 295245 550000 ...
...
For n = 4 and k = 2, the palindromic necklaces are 0000, 0001, 0011, 0111, 0101, 1111 so T(4,2) = 6. Necklaces are only counted up to cyclic equivalence.
For n = 4 and k = 2, using MacMahon's bijection, with B = 0 and W = 1, the corresponding Sommerville symmetrical cyclic compositions of n = 4 are as follows: 1+1+1+1, 1+1+2, 1+3, 4, 2+2 (with none for 1111). If we let B = 1 and W = 0, we get the corresponding symmetrical cyclic compositions of n=4: (none for 0000) 4, 1+3, 1+1+2, 2+2, 1+1+1+1. (All these cyclic compositions must viewed on a circle.) - _Petros Hadjicostas_, Sep 02 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for the pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2 + 1))/2, k^((n+1)/2)];
    Table[a[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 05 2017, translated from PARI *)
  • PARI
    a(n,k) = if(n % 2 == 0, (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2));
    for(n=1, 10, for(k=1, 10, print1( a(n,k),", ");); print(););

Formula

T(2*n, k) = (k^(n+1) + k^n) / 2.
T(2*n + 1, k) = k^(n+1).
T(n, k) = 2 * A081720(n, k) - A075195(n, k).
From Petros Hadjicostas, Sep 02 2018: (Start)
For fixed k >= 1, the k-th column (T(n, k): n >= 1) is the CPAL ("circular palindrome") transform of the sequence k, 0, 0, ...
G.f. of column k: Sum_{n>=1} T(n,k)*x^n = (1 + k*x)^2/(2*(1 - k*x^2)) - 1/2. (End)

A087206 a(n) = 2*a(n-1) + 4*a(n-2); with a(0)=1, a(1)=4.

Original entry on oeis.org

1, 4, 12, 40, 128, 416, 1344, 4352, 14080, 45568, 147456, 477184, 1544192, 4997120, 16171008, 52330496, 169345024, 548012032, 1773404160, 5738856448, 18571329536, 60098084864, 194481487872, 629355315200, 2036636581888
Offset: 0

Views

Author

Paul Barry, Aug 25 2003

Keywords

Comments

Binomial transform of A056487. Unsigned version of A152174.
Number of words of length n over the alphabet {1,2,3,4} such that no odd letter is followed by an odd letter. - Armend Shabani, Feb 18 2017
From Sean A. Irvine, Jun 06 2025: (Start)
Also, the number of walks of length n starting at 0 in the following graph:
1---2
|\ /|
| 0 |
|/ \|
4---3. (End)

Crossrefs

Equals (1/2) * A063727(n-1). Cf. A006483.

Programs

Formula

G.f.: (1+2x)/(1-2x-4x^2).
a(n) = (1-sqrt(5))^n*(1/2-3*sqrt(5)/10)+(1+sqrt(5))^n*(1/2+3*sqrt(5)/10).
a(n) = 2^n*Fibonacci(n+2). - Paul Barry, Mar 22 2004
a(n) = ((1+sqrt(5))^n-(1-sqrt(5))^n)/sqrt(80). Offset 2. a(4)=12. - Al Hakanson (hawkuu(AT)gmail.com), Apr 11 2009
G.f.: 1/(-2x-1/(-2x-1)). - Paul Barry, Mar 24 2010

Extensions

Comment corrected by Philippe Deléham, Nov 27 2008

A032276 Number of bracelets (turnover necklaces) with n beads of 5 colors.

Original entry on oeis.org

5, 15, 35, 120, 377, 1505, 5895, 25395, 110085, 493131, 2227275, 10196680, 46989185, 218102685, 1017448143, 4768969770, 22440372245, 105966797755, 501938733555, 2384200683816, 11353290089305
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Sep 01 2018: (Start)
The DIK transform of the sequence (c(n): n >= 1), with g.f. C(x) = Sum_{n >= 1} c(n)*x^n, has g.f. -(1/2)*Sum_{m >= 1} (phi(m)/m))*log(1-C(x^m)) + (1 + C(x))^2/(4*(1-C(x^2))) - 1/4.
Here, c(1) = 5 and c(n) = 0 for n >= 2, and thus, C(x) = 5*x. Substituting this to the above g.f., we get that the g.f. of the current sequence is A(x) = Sum_{n >= 1} a(n)*x^n = -(1/2)*Sum_{m >= 1} (phi(m)/m))*log(1-5*x^m) + (1 + 5*x)^2/(4*(1-5*x^2)) - 1/4. This agrees with Herbert Kociemba's g.f. below except for an extra 1 because (1 + (1+5*x+10*x^2)/(1-5*x^2))/2 = 1 + (1 + 5*x)^2/(4*(1-5*x^2)) - 1/4.
(End)

Examples

			For n=2, the 15 bracelets are AA, AB, AC, AD, AE, BB, BC, BD, BE, CC, CD, CE, DD, DE, and EE. - _Robert A. Russell_, Sep 24 2018
		

Crossrefs

Cf. A081720.
Column 5 of A051137.
Cf. A001869 (oriented), A056487 (achiral), A278641 (chiral).

Programs

  • Mathematica
    mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-5*x^n]/n,{n,mx}]+(1+5 x+10 x^2)/(1-5 x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *)
    k=5; Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}] (* Robert A. Russell, Sep 24 2018 *)

Formula

"DIK" (bracelet, indistinct, unlabeled) transform of 5, 0, 0, 0, ...
a(n) = A081720(n,5), n >= 1. - Wolfdieter Lang, Jun 03 2012
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 5*x^n)/n + (1+5*x+10*x^2)/(1-5*x^2))/2. - Herbert Kociemba, Nov 02 2016
a(n) = (3/2)*5^(n/2) + (1/(2*n))*Sum_{d|n} phi(n/d)*5^d, if n is even, and = (1/2)*5^((n+1)/2) + (1/(2*n))*Sum_{d|n} phi(n/d)*5^d, if n is odd. - Petros Hadjicostas, Sep 01 2018
a(n) = (A001869(n) + A056487(n+1)) / 2 = A278641(n) + A056487(n+1) = A001869(n) - A278641(n). - Robert A. Russell, Oct 13 2018
a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{d divides n} phi(d)*k^(n/d), where k=5 is the maximum number of colors. - Richard L. Ollerton, May 04 2021
a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i), where k=5 is the maximum number of colors. (See A051137.) - Richard L. Ollerton, May 04 2021

A163114 a(n) = 5*a(n-2) for n > 2; a(1) = 3, a(2) = 5.

Original entry on oeis.org

3, 5, 15, 25, 75, 125, 375, 625, 1875, 3125, 9375, 15625, 46875, 78125, 234375, 390625, 1171875, 1953125, 5859375, 9765625, 29296875, 48828125, 146484375, 244140625, 732421875, 1220703125, 3662109375, 6103515625, 18310546875
Offset: 1

Views

Author

Klaus Brockhaus, Jul 21 2009

Keywords

Comments

Binomial transform is A163062, second binomial transform is A163063, third binomial transform is A098648 without initial 1, fourth binomial transform is A163064, fifth binomial transform is A163065.

Crossrefs

Programs

  • Magma
    [ n le 2 select 2*n+1 else 5*Self(n-2): n in [1..29] ];
    
  • Mathematica
    CoefficientList[Series[x*(3 + 5*x)/(1 - 5*x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)
    LinearRecurrence[{0,5},{3,5},30] (* Harvey P. Dale, Aug 01 2021 *)
  • PARI
    x='x+O('x^30); Vec(x*(3+5*x)/(1-5*x^2)) \\ G. C. Greubel, Dec 21 2017

Formula

a(n) = (2-(-1)^n)*5^(1/4*(2*n-1+(-1)^n)).
G.f.: x*(3+5*x)/(1-5*x^2).
a(n) = A056487(n), n>=1.
E.g.f.: cosh(sqrt(5)*x) + 3*sinh(sqrt(5)*x)/sqrt(5) - 1. - Stefano Spezia, Nov 19 2023

A111386 a(1) = 1, a(2) = 3; for n >= 3, take a(n) to be the smallest odd number not occurring earlier such that a(n-1) divides the concatenation a(n-2)a(n).

Original entry on oeis.org

1, 3, 5, 15, 25, 75, 125, 375, 625, 1875, 3125, 9375, 15625, 46875, 78125, 234375, 390625, 1171875, 1953125, 5859375, 9765625, 29296875, 48828125, 146484375, 244140625, 732421875, 1220703125, 3662109375, 6103515625, 18310546875, 30517578125
Offset: 1

Views

Author

Amarnath Murthy, Nov 11 2005

Keywords

Comments

Apparently identical to A056487! Is this a theorem? - Klaus Brockhaus, Jul 21 2009

Examples

			After 75 the term is 125 since 75 divides 25125.
		

Crossrefs

Cf. A111387.

Extensions

More terms from R. J. Mathar, Aug 20 2007
a(21)-a(31) from Donovan Johnson, Apr 27 2008

A278641 Number of pairs of orientable necklaces with n beads and up to 5 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count.

Original entry on oeis.org

0, 0, 0, 10, 45, 252, 1130, 5270, 23520, 106960, 483756, 2211650, 10149805, 46911060, 217868310, 1017057518, 4767797895, 22438419120, 105960938380, 501928967930, 2384171386941, 11353241261180, 54185968572450, 259150507387910, 1241763071712930, 5960463867187752, 28656077411358180, 137973711706163210
Offset: 0

Views

Author

Herbert Kociemba, Nov 24 2016

Keywords

Comments

Number of chiral bracelets of n beads using up to five different colors.

Crossrefs

Column 5 of A293496.
Cf. A059076 (2 colors), A278639 (3 colors), A278640 (4 colors).
a(n) = (A001869(n) - A056487(n+1)) / 2 = A032276(n) - A056487(n+1).
Equals A001869 - A032276.

Programs

  • Mathematica
    mx=40;f[x_,k_]:=(1-Sum[EulerPhi[n]*Log[1-k*x^n]/n,{n,1,mx}]-Sum[Binomial[k,i]*x^i,{i,0,2}]/(1-k*x^2))/2;CoefficientList[Series[f[x,5],{x,0,mx}],x]
    k=5; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) - (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)

Formula

G.f.: k=5, (1 - Sum_{n>=1} phi(n)*log(1 - k*x^n)/n - Sum_{i=0..2} Binomial[k,i]*x^i / ( 1-k*x^2) )/2.
For n>0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k=5 is the maximum number of colors. - Robert A. Russell, Sep 24 2018

A081057 E.g.f.: Sum_{n>=0} a(n)*x^n/n! = {Sum_{n>=0} F(n+1)*x^n/n!}^2, where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

1, 2, 6, 18, 58, 186, 602, 1946, 6298, 20378, 65946, 213402, 690586, 2234778, 7231898, 23402906, 75733402, 245078426, 793090458, 2566494618, 8305351066, 26876680602, 86974765466, 281456253338, 910811568538, 2947448150426, 9538142575002, 30866077751706
Offset: 0

Views

Author

Paul D. Hanna, Mar 03 2003

Keywords

Comments

a(n) ~ c*(sqrt(5)+1)^n, where c = (sqrt(5)+3)/10.
The inverse binomial transform is 1,1,3,5,... (1 followed by A056487). Partial sum of 1,1,4,12,..., i.e., 1 plus n-th partial sum of A087206. [R. J. Mathar, Oct 04 2010]
From R. J. Mathar, Oct 12 2010: (Start)
Apparently the row n=4 of an array which counts walks with k steps on an n X n board, starting at a corner, each step to one of the <= 4 adjacent squares:
1,2,4,8,16,32,64,128,256,512,1024,2048,4096,
1,2,6,16,48,128,384,1024,3072,8192,24576,65536,196608,
1,2,6,18,58,186,602,1946,6298,20378,65946,213402,690586,
1,2,6,18,60,198,684,2322,8100,27702,96876,331938,1161540,
1,2,6,18,60,200,698,2432,8658,30762,110374,395428,1422916,
1,2,6,18,60,200,700,2448,8800,31552,115104,418176,1537536,
1,2,6,18,60,200,700,2450,8818,31730,116182,425172,1573416,
1,2,6,18,60,200,700,2450,8820,31750,116400,426600,1583400,
1,2,6,18,60,200,700,2450,8820,31752,116422,426862,1585246,
1,2,6,18,60,200,700,2450,8820,31752,116424,426886,1585556,
1,2,6,18,60,200,700,2450,8820,31752,116424,426888,1585582,
(End)
Decomposing rook walks of length=n on a 4 X 4 board into combinations of independent vertical and horizontal walks in 4-wide corridors leads to an exponential convolution of the Fibonacci numbers, cf. A052899. [David Scambler, Oct 17 2010]

Crossrefs

a(n) = A052899(n-1) + A052899(n). a(n) - 2*a(n-1) = A014334(n).
Row sums of A109906.

Formula

G.f.: (1-x-2x^2)/(1-3x-2x^2+4x^3). - Michael Somos, Mar 04 2003
a(n) - 2*a(n-1) = A014334(n), n > 0. - Vladeta Jovovic, Mar 05 2003
From Vladeta Jovovic, Mar 05 2003: (Start)
a(n) = 2/5 + (3/10 - 1/10*5^(1/2))*(1 - 5^(1/2))^n + (3/10 + 1/10*5^(1/2))*(1 + 5^(1/2))^n.
Recurrence: a(n) = 3*a(n-1) + 2*a(n-2) - 4*a(n-3).
G.f.: (1+x)*(1-2*x)/(1-2*x-4*x^2)/(1-x). (End)
a(n) = Sum_{k=0..n} ( F(k+1) * F(n-k+1) * C(n,k) ), where F(k) = Fibonacci(k). - David Scambler, Oct 17 2010
a(n) = (2^n*Lucas(n+2)+2)/5. - Ira M. Gessel, Mar 06 2022

Extensions

Corrected and extended by Vladeta Jovovic and Michael Somos, Mar 05 2003

A121102 Catapolyoctagons (see Cyvin et al. for precise definition).

Original entry on oeis.org

0, 0, 0, 4, 24, 144, 744, 3844, 19344, 97344, 487344, 2439844, 12202344, 61027344, 305152344, 1525839844, 7629277344, 38146777344, 190734277344, 953673339844, 4768368652344, 23841853027344, 119209274902344, 596046423339844, 2980232165527344, 14901161071777344, 74505805603027344
Offset: 1

Views

Author

N. J. A. Sloane, Aug 11 2006

Keywords

References

  • S. J. Cyvin, B. N. Cyvin, and J. Brunvoll. Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134 (1997), 55-70, Table 1 Symmetry C_s.

Crossrefs

Cf. A056487.

Programs

  • Maple
    A121102 := proc(n)
        local mr,ar,cr,dr ,ir,p5;
        if n = 1 then
            ar := 1 ;
        else
            ar := 0 ;
        end if;
        dr := 1-ar ;
        p5 := 5^(floor(n/2)-1) ;
        if n = 1 then
            cr :=0 ;
        else
            cr := (p5-1)/2+2*ar/5 ;
        end if;
        mr := (3-2*(-1)^n)*p5/2-1/2 ;
        if n = 1 then
            ir := 1;
        else
            ir := (5^(n-2)+1)/4  +(2-(-1)^n)*p5/2 -3*ar/5 ;
        end if;
        ir-ar-dr-cr-mr ;
    end proc:
    seq(A121102(n),n=1..30) ; # R. J. Mathar, Jul 31 2019
  • Mathematica
    LinearRecurrence[{6, 0, -30, 25}, {0, 0, 0, 4}, 27] (* Jean-François Alcover, Mar 31 2020 *)

Formula

From R. J. Mathar, Jul 31 2019: (Start)
G.f.: -4*x^4/((x - 1)*(5*x - 1)*(5*x^2 - 1)).
4*a(n) = 5^(n-2) + 1 - 10*A056487(n-4). (End)
E.g.f.: (25*cosh(x) + cosh(5*x) - 10*cosh(sqrt(5)*x) + 25*sinh(x) + sinh(5*x) - 6*sqrt(5)*sinh(sqrt(5)*x) - 16)/100. - Stefano Spezia, Jun 06 2023

A056496 Number of primitive (period n) periodic palindromes using a maximum of five different symbols.

Original entry on oeis.org

5, 10, 20, 60, 120, 340, 620, 1800, 3100, 9240, 15620, 46440, 78120, 233740, 390480, 1170000, 1953120, 5855900, 9765620, 29287440, 48827480, 146468740, 244140620, 732373200, 1220703000, 3662031240
Offset: 1

Views

Author

Keywords

Comments

Number of aperiodic necklaces with five colors that are the same when turned over and hence have reflectional symmetry but no rotational symmetry. - Herbert Kociemba, Nov 29 2016

Examples

			For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A284856.
Cf. A056461.

Programs

  • Mathematica
    mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)),{n,mx}]; CoefficientList[Series[gf[x,5],{x,0,mx}],x] (* Herbert Kociemba, Nov 29 2016 *)

Formula

a(n) = Sum_{d|n} mu(d)*A056487(n/d).
From Herbert Kociemba, Nov 29 2016: (Start)
More generally, gf(k) is the g.f. for the number of necklaces with reflectional symmetry but no rotational symmetry and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)). (End)
Showing 1-10 of 11 results. Next