A163063
Lucas(3n+2) = Fibonacci(3n+1) + Fibonacci(3n+3).
Original entry on oeis.org
3, 11, 47, 199, 843, 3571, 15127, 64079, 271443, 1149851, 4870847, 20633239, 87403803, 370248451, 1568397607, 6643838879, 28143753123, 119218851371, 505019158607, 2139295485799, 9062201101803, 38388099893011
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((3+r)*(2+r)^n+(3-r)*(2-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
-
[Lucas(3*n+2): n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
with(combinat):A163063:=proc(n)return fibonacci(3*n+1) + fibonacci(3*n+3): end:seq(A163063(n), n=0..21); # Nathaniel Johnston, Apr 18 2011
-
Table[Fibonacci[3n + 1] + Fibonacci[3n + 3], {n, 0, 21}] (* Alonso del Arte, Nov 29 2010 *)
LinearRecurrence[{4,1},{3,11},30] (* Harvey P. Dale, Apr 14 2021 *)
-
Vec((3-x)/(1-4*x-x^2) + O(x^100)) \\ Altug Alkan, Dec 10 2015
A163062
a(n) = ((3+sqrt(5))*(1+sqrt(5))^n + (3-sqrt(5))*(1-sqrt(5))^n)/2.
Original entry on oeis.org
3, 8, 28, 88, 288, 928, 3008, 9728, 31488, 101888, 329728, 1067008, 3452928, 11173888, 36159488, 117014528, 378667008, 1225392128, 3965452288, 12832473088, 41526755328, 134383403008, 434873827328, 1407281266688
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((3+r)*(1+r)^n+(3-r)*(1-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
-
I:=[3,8]; [n le 2 select I[n] else 2*Self(n-1) + 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 22 2017
-
CoefficientList[Series[(3+2*x)/(1-2*x-4*x^2), {x,0,50}], x] (* or *) LinearRecurrence[{2,4}, {3,8}, 30] (* G. C. Greubel, Dec 22 2017 *)
-
x='x+O('x^30); Vec((3+2*x)/(1-2*x-4*x^2)) \\ G. C. Greubel, Dec 22 2017
A163064
a(n) = ((3+sqrt(5))*(4+sqrt(5))^n + (3-sqrt(5))*(4-sqrt(5))^n)/2.
Original entry on oeis.org
3, 17, 103, 637, 3963, 24697, 153983, 960197, 5987763, 37339937, 232854103, 1452093517, 9055353003, 56469795337, 352149479663, 2196028088597, 13694580432483, 85400334485297, 532562291125063, 3321094649662237
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((3+r)*(4+r)^n+(3-r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
-
I:=[3,17]; [n le 2 select I[n] else 8*Self(n-1) - 11*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 22 2017
-
CoefficientList[Series[(3-7*x)/(1-8*x+11*x^2), {x,0,50}], x] (* or *) LinearRecurrence[{8,-11}, {3,17}, 30] (* G. C. Greubel, Dec 22 2017 *)
-
x='x+O('x^30); Vec((3-7*x)/(1-8*x+11*x^2)) \\ G. C. Greubel, Dec 22 2017
A163065
a(n) = ((3+sqrt(5))*(5+sqrt(5))^n + (3-sqrt(5))*(5-sqrt(5))^n)/2.
Original entry on oeis.org
3, 20, 140, 1000, 7200, 52000, 376000, 2720000, 19680000, 142400000, 1030400000, 7456000000, 53952000000, 390400000000, 2824960000000, 20441600000000, 147916800000000, 1070336000000000, 7745024000000000, 56043520000000000
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((3+r)*(5+r)^n+(3-r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
-
I:=[3,20]; [n le 2 select I[n] else 10*Self(n-1) - 20*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 22 2017
-
CoefficientList[Series[(3-10*x)/(1-10*x+20*x^2), {x,0,50}], x] (* or *) LinearRecurrence[{10,-20}, {3,20}, 30] (* G. C. Greubel, Dec 22 2017 *)
-
x='x+O('x^30); Vec((3-10*x)/(1-10*x+20*x^2)) \\ G. C. Greubel, Dec 22 2017
Showing 1-4 of 4 results.
Comments