A307268
Partial sums of the Lucas numbers of the form L(3n+2) (A163063).
Original entry on oeis.org
3, 14, 61, 260, 1103, 4674, 19801, 83880, 355323, 1505174, 6376021, 27009260, 114413063, 484661514, 2053059121, 8696898000, 36840651123, 156059502494, 661078661101, 2800374146900, 11862575248703, 50250675141714, 212865275815561, 901711778403960, 3819712389431403
Offset: 0
L(2) + L(5) = 14;
L(2) + L(5) + L(8) = 61;
L(2) + L(5) + L(8) + L(11) = 260.
-
Table[(LucasL[3*n + 4] - 1)/2, {n, 0, 20}]
LinearRecurrence[{5,-3,-1},{3,14,61},30] (* Harvey P. Dale, Aug 10 2022 *)
-
L(n) = fibonacci(n+1)+fibonacci(n-1);
a(n) = (L(3*n+4)-1)/2; \\ Michel Marcus, Apr 01 2019
-
Vec((3 - x) / ((1 - x)*(1 - 4*x - x^2)) + O(x^25)) \\ Colin Barker, Apr 02 2019
A163114
a(n) = 5*a(n-2) for n > 2; a(1) = 3, a(2) = 5.
Original entry on oeis.org
3, 5, 15, 25, 75, 125, 375, 625, 1875, 3125, 9375, 15625, 46875, 78125, 234375, 390625, 1171875, 1953125, 5859375, 9765625, 29296875, 48828125, 146484375, 244140625, 732421875, 1220703125, 3662109375, 6103515625, 18310546875
Offset: 1
-
[ n le 2 select 2*n+1 else 5*Self(n-2): n in [1..29] ];
-
CoefficientList[Series[x*(3 + 5*x)/(1 - 5*x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)
LinearRecurrence[{0,5},{3,5},30] (* Harvey P. Dale, Aug 01 2021 *)
-
x='x+O('x^30); Vec(x*(3+5*x)/(1-5*x^2)) \\ G. C. Greubel, Dec 21 2017
A163062
a(n) = ((3+sqrt(5))*(1+sqrt(5))^n + (3-sqrt(5))*(1-sqrt(5))^n)/2.
Original entry on oeis.org
3, 8, 28, 88, 288, 928, 3008, 9728, 31488, 101888, 329728, 1067008, 3452928, 11173888, 36159488, 117014528, 378667008, 1225392128, 3965452288, 12832473088, 41526755328, 134383403008, 434873827328, 1407281266688
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((3+r)*(1+r)^n+(3-r)*(1-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
-
I:=[3,8]; [n le 2 select I[n] else 2*Self(n-1) + 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 22 2017
-
CoefficientList[Series[(3+2*x)/(1-2*x-4*x^2), {x,0,50}], x] (* or *) LinearRecurrence[{2,4}, {3,8}, 30] (* G. C. Greubel, Dec 22 2017 *)
-
x='x+O('x^30); Vec((3+2*x)/(1-2*x-4*x^2)) \\ G. C. Greubel, Dec 22 2017
A332936
Number of blue nodes in n-th power graph W exponentiation of a cycle graph with 7 blue nodes and 1 green node.
Original entry on oeis.org
7, 51, 387, 2943, 22383, 170235, 1294731, 9847143, 74892951, 569602179, 4332138579, 32948302095, 250590001023, 1905875101899, 14495230812123, 110244221191287, 838468077093927, 6377011953177555, 48500691394138659, 368874495293576607, 2805493888166196879, 21337327619448845211
Offset: 0
For n = 2 take g(1)=15 and b(1)=51. Multiply b(1) by 7 to get 357 add 30 to get 387.
For n = 3 take g(2)=117 and b(2)=387. Multiply b(2) by 7 to get 774 add 234 to get 2943.
-
Vec((1 + 43*x - 18*x^2) / (1 - 8*x + 3*x^2) + O(x^40)) \\ Colin Barker, Mar 03 2020
-
g=1
b=7
sg=0
sb=0
bl=[]
gl=[]
for int in range(1,20):
sg=g*1+b*2
sb=b*7+g*2
g=sg
b=sb
gl.append(g)
bl.append(b)
print(bl)
A122909
a(n) = F(n+1)*F(2n+2) + F(n)*F(2n).
Original entry on oeis.org
1, 4, 19, 79, 338, 1427, 6053, 25628, 108583, 459931, 1948354, 8253271, 34961561, 148099316, 627359147, 2657535383, 11257501522, 47687540107, 202007664157, 855718193164, 3624880442591, 15355239954179, 65045840274434
Offset: 0
-
Table[Fibonacci[n+1]Fibonacci[2n+2]+Fibonacci[n]Fibonacci[2n],{n,0,30}] (* or *) LinearRecurrence[{3,6,-3,-1},{1,4,19,79},30] (* Harvey P. Dale, Dec 11 2016 *)
Showing 1-5 of 5 results.
Comments