cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A163114 a(n) = 5*a(n-2) for n > 2; a(1) = 3, a(2) = 5.

Original entry on oeis.org

3, 5, 15, 25, 75, 125, 375, 625, 1875, 3125, 9375, 15625, 46875, 78125, 234375, 390625, 1171875, 1953125, 5859375, 9765625, 29296875, 48828125, 146484375, 244140625, 732421875, 1220703125, 3662109375, 6103515625, 18310546875
Offset: 1

Views

Author

Klaus Brockhaus, Jul 21 2009

Keywords

Comments

Binomial transform is A163062, second binomial transform is A163063, third binomial transform is A098648 without initial 1, fourth binomial transform is A163064, fifth binomial transform is A163065.

Crossrefs

Programs

  • Magma
    [ n le 2 select 2*n+1 else 5*Self(n-2): n in [1..29] ];
    
  • Mathematica
    CoefficientList[Series[x*(3 + 5*x)/(1 - 5*x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)
    LinearRecurrence[{0,5},{3,5},30] (* Harvey P. Dale, Aug 01 2021 *)
  • PARI
    x='x+O('x^30); Vec(x*(3+5*x)/(1-5*x^2)) \\ G. C. Greubel, Dec 21 2017

Formula

a(n) = (2-(-1)^n)*5^(1/4*(2*n-1+(-1)^n)).
G.f.: x*(3+5*x)/(1-5*x^2).
a(n) = A056487(n), n>=1.
E.g.f.: cosh(sqrt(5)*x) + 3*sinh(sqrt(5)*x)/sqrt(5) - 1. - Stefano Spezia, Nov 19 2023

A163065 a(n) = ((3+sqrt(5))*(5+sqrt(5))^n + (3-sqrt(5))*(5-sqrt(5))^n)/2.

Original entry on oeis.org

3, 20, 140, 1000, 7200, 52000, 376000, 2720000, 19680000, 142400000, 1030400000, 7456000000, 53952000000, 390400000000, 2824960000000, 20441600000000, 147916800000000, 1070336000000000, 7745024000000000, 56043520000000000
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009

Keywords

Comments

Binomial transform of A163064. Fifth binomial transform of A163114.
10^(floor(n/2)) | a(n). - G. C. Greubel, Dec 22 2017

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((3+r)*(5+r)^n+(3-r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
    
  • Magma
    I:=[3,20]; [n le 2 select I[n] else 10*Self(n-1) - 20*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 22 2017
    
  • Mathematica
    CoefficientList[Series[(3-10*x)/(1-10*x+20*x^2), {x,0,50}], x] (* or *) LinearRecurrence[{10,-20}, {3,20}, 30] (* G. C. Greubel, Dec 22 2017 *)
  • PARI
    x='x+O('x^30); Vec((3-10*x)/(1-10*x+20*x^2)) \\ G. C. Greubel, Dec 22 2017

Formula

a(n) = 10*a(n-1) - 20*a(n-2) for n > 1; a(0) = 3, a(1) = 20.
G.f.: (3-10*x)/(1-10*x+20*x^2).

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 21 2009
Showing 1-2 of 2 results.