cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056565 Fibonomial coefficients.

Original entry on oeis.org

1, 21, 714, 19635, 582505, 16776144, 488605194, 14169550626, 411591708660, 11948265189630, 346934172869802, 10072785423545712, 292460526776698763, 8491396839675395415, 246543315138161480670, 7158243695757340957617, 207835653079349665473587
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Crossrefs

Programs

  • Magma
    [ &*[Fibonacci(n+k): k in [0..6]]/3120: n in [1..16] ]; // Bruno Berselli, Apr 11 2011
    
  • Mathematica
    (Times@@@Partition[Fibonacci[Range[30]],7,1])/3120  (* Harvey P. Dale, Apr 10 2011 *)
  • PARI
    b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
    vector(20, n, b(n-1, 7))  \\ Joerg Arndt, May 08 2016

Formula

a(n) = A010048(n+7, 7) =: Fibonomial(n+7, 7).
G.f.: 1/p(8, n) with p(8, n) = 1 - 21*x - 273*x^2 + 1092*x^3 + 1820*x^4 - 1092*x^5 - 273*x^6 + 21*x^7 + x^8 = (1 + x - x^2) * (1 - 4*x - x^2) * (1 + 11*x - x^2) * (1 - 29*x - x^2) (n=8 row polynomial of signed Fibonomial triangle A055870; see this entry for Knuth and Riordan references).
a(n) = 29*a(n-1) + a(n-2) + ((-1)^n) * A001657(n), n >= 2, a(0)=1, a(1)=21.
G.f.: exp( Sum_{k>=1} F(8*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025

Extensions

Offset corrected by Seiichi Manyama, May 07 2025