A056606 Squarefree kernel of lcm(binomial(n,0), ..., binomial(n,n)).
1, 1, 2, 3, 6, 10, 30, 105, 70, 42, 210, 2310, 2310, 4290, 6006, 15015, 30030, 170170, 510510, 1939938, 1385670, 881790, 9699690, 223092870, 44618574, 17160990, 74364290, 31870410, 223092870, 6469693230, 6469693230, 100280245065
Offset: 0
Keywords
Examples
a(7) = 105 because lcm(1, 7, 21, 35) = 105 is already squarefree. a(0) = 1 because n^n/n! = 1 for the integer n = 0. - _Peter Luschny_, Dec 21 2019
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2371
Crossrefs
Programs
-
Haskell
a056606 = a007947 . a001142 -- Reinhard Zumkeller, Mar 21 2015
-
Maple
h := n -> mul(k^k/factorial(k), k=0..n): rad := n -> mul(k, k = numtheory[factorset](n)): seq(rad(h(n)), n=0..31); # Peter Luschny, Dec 21 2019
-
Mathematica
Table[Apply[Times, FactorInteger[Product[k^(2 k - 1 - n), {k, n}]][[All, 1]]], {n, 0, 31}] (* or *) Table[Apply[Times, FactorInteger[Apply[LCM, Range@ n]/n][[All, 1]]], {n, 1, 32}] (* Michael De Vlieger, Jul 14 2017 *)
-
PARI
rad(n) = factorback(factorint(n)[, 1]); \\ A007947 a(n) = rad(lcm(vector(n+1, k, binomial(n,k-1)))); \\ Michel Marcus, Jun 24 2023
Formula
a(n) = radical(hyperfactorial(n)/superfactorial(n)) = A007947(A002109(n)/ A000178(n)) for n >= 0. - Peter Luschny, Dec 21 2019
Extensions
Extended with a(0) = 1 by Peter Luschny, Dec 21 2019
Comments