A056665 Number of equivalence classes of n-valued Post functions of 1 variable under action of complementing group C(1,n).
1, 3, 11, 70, 629, 7826, 117655, 2097684, 43046889, 1000010044, 25937424611, 743008623292, 23298085122493, 793714780783770, 29192926025492783, 1152921504875290696, 48661191875666868497, 2185911559749720272442, 104127350297911241532859
Offset: 1
Examples
The 11 necklaces for n=3 are (grouped by partition of 3): (RRR,GGG,BBB),(RRG,RGG, RRB,RBB, GGB,GBB), (RGB,RBG).
References
- D. E. Knuth. Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, 7.2.1.1. Addison-Wesley, 2005.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..200
- M. A. Harrison and R. G. High, On the cycle index of a product of permutation groups, J. Combin. Theory, 4 (1968), 277-299.
- F. Ruskey, C. Savage, and T. M. Y. Wang, Generating necklaces, Journal of Algorithms, 13(3), 414 - 430, 1992.
- Index entries for sequences related to groups
Crossrefs
Cf. A075147 Aperiodic necklaces, a subset of this sequence.
Cf. A000169 Classes under translation mod n
Cf. A168658 Classes under complement to n+1
Cf. A130293 Classes under translation and rotation
Cf. A081721 Classes under rotation and reversal
Cf. A275549 Classes under reversal
Cf. A275550 Classes under reversal and complement
Cf. A275551 Classes under translation and reversal
Cf. A275552 Classes under translation and complement
Cf. A275553 Classes under translation, complement and reversal
Cf. A275554 Classes under translation, rotation and complement
Cf. A275555 Classes under translation, rotation and reversal
Cf. A275556 Classes under translation, rotation, complement and reversal
Cf. A275557 Classes under rotation and complement
Cf. A275558 Classes under rotation, complement and reversal
Cf. A228640.
Programs
-
Maple
with(numtheory): a:= n-> add(phi(d)*n^(n/d), d=divisors(n))/n: seq(a(n), n=1..25); # Alois P. Heinz, Jun 18 2013
-
Mathematica
Table[Fold[ #1+EulerPhi[ #2] n^(n/#2)&, 0, Divisors[n]]/n, {n, 7}]
-
PARI
a(n) = sum(k=1,n,n^gcd(k,n)) / n; \\ Joerg Arndt, Mar 19 2017
-
Sage
# This algorithm counts all n-ary n-tuples (a_1,..,a_n) such that the string a_1...a_n is preprime. It is algorithm F in Knuth 7.2.1.1. def A056665_list(n): C = [] for m in (1..n): a = [0]*(n+1); a[0]=-1; j = 1; count = 0 while(true): if m%j == 0 : count += 1; j = n while a[j] >= m-1 : j -= 1 if j == 0 : break a[j] += 1 for k in (j+1..n): a[k] = a[k-j] C.append(count) return C
-
Sage
def A056665(n): return sum(euler_phi(d)*n^(n//d)//n for d in divisors(n)) [A056665(n) for n in (1..18)] # Peter Luschny, Aug 12 2012
Formula
a(n) = Sum_{d|n} phi(d)*n^(n/d)/n.
a(n) ~ n^(n-1). - Vaclav Kotesovec, Sep 11 2014
a(n) = (1/n) * Sum_{k=1..n} n^gcd(k,n). - Joerg Arndt, Mar 19 2017
a(n) = [x^n] -Sum_{k>=1} phi(k)*log(1 - n*x^k)/k. - Ilya Gutkovskiy, Mar 21 2018
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = (1/n)*Sum_{k=1..n} n^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = (1/n)*A228640(n). (End)
Comments