A056737 Minimum nonnegative integer m such that n = k*(k+m) for some positive integer k.
0, 1, 2, 0, 4, 1, 6, 2, 0, 3, 10, 1, 12, 5, 2, 0, 16, 3, 18, 1, 4, 9, 22, 2, 0, 11, 6, 3, 28, 1, 30, 4, 8, 15, 2, 0, 36, 17, 10, 3, 40, 1, 42, 7, 4, 21, 46, 2, 0, 5, 14, 9, 52, 3, 6, 1, 16, 27, 58, 4, 60, 29, 2, 0, 8, 5, 66, 13, 20, 3, 70, 1, 72, 35, 10, 15, 4
Offset: 1
Keywords
Examples
a(8) = 2 because 8 = 2*(2+2) and 8 = k*(k+1) or 8 = k^2 have no solutions for k = a positive integer.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Clive Tooth, [Sum_{i=2..n} a(i)]/[Sum_{i=2..n} i/log(i)] for n=10^6 to 10^8
Programs
-
Mathematica
A033676[n_] := If[EvenQ[DivisorSigma[0, n]], Divisors[n][[DivisorSigma[0, n]/2]], Sqrt[n]]; A033677[n_] := If[EvenQ[DivisorSigma[0, n]], Divisors[n][[DivisorSigma[0, n]/2+1]], Sqrt[n]]; Table[A033677[n] - A033676[n], {n, 1, 77}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 27 2004 *) Table[d = Divisors[n]; len = Length[d]; If[OddQ[len], 0, d[[1 + len/2]] - d[[len/2]]], {n, 100}] (* T. D. Noe, Jun 04 2012 *)
-
PARI
A056737(n)={n=divisors(n);n[(2+#n)\2]-n[(1+#n)\2]} \\ M. F. Hasler, Nov 25 2012
Formula
a(n) = Min_{t - d | 0 < d <= t <= n and d*t=n}. - Reinhard Zumkeller, Feb 25 2002
a(2n-1) = 2*A219695(n). - M. F. Hasler, Nov 25 2012
Comments