A324920 a(n) is the number of iterations of the integer splitting function (A056737) necessary to reach zero.
0, 1, 2, 3, 1, 2, 2, 3, 3, 1, 4, 5, 2, 3, 3, 3, 1, 2, 4, 5, 2, 2, 2, 3, 3, 1, 6, 3, 4, 5, 2, 3, 2, 4, 4, 3, 1, 2, 3, 5, 4, 5, 2, 3, 4, 2, 3, 4, 3, 1, 3, 4, 2, 3, 4, 3, 2, 2, 4, 5, 2, 3, 6, 3, 1, 4, 3, 4, 4, 3, 4, 5, 2, 3, 4, 5, 4, 2, 4, 5, 3, 1, 6, 7, 3, 3, 6, 7, 4, 5, 2, 3, 6, 5, 3, 4, 2, 3, 4, 3, 1, 2, 6, 7, 3
Offset: 0
Keywords
Examples
a(0) = 0; a(1) = 1 since 1 -> 0; a(2) = 2 since 2 -> 1 -> 0; a(3) = 3 since 3 -> 2 -> 1 -> 0; a(4) = 1 since 4 -> 0; etc.
Programs
-
Mathematica
g[n_] := Block[{d = Divisors@n}, len = Length@d; If[ OddQ@ len, 0, d[[1 + len/2]] - d[[len/2]]]]; f[n_] := Length@ NestWhileList[f, n, # > 0 &] -1; Array[f, 105, 0]
-
PARI
a056737(n)=n=divisors(n); n[(2+#n)\2]-n[(1+#n)\2] \\ after M. F. Hasler in A056737 a(n) = my(x=n, i=0); while(x!=0, i++; x=a056737(x)); i \\ Felix Fröhlich, Mar 20 2019
Formula
a(n) = 1 iff n is a perfect square (A000290).
Comments