0, 1, 2, 6, 18, 30, 576, 840, 24480, 93696, 800640, 7983360, 65318400, 2286926400, 13680979200, 797369149440, 16753029012720, 10176199188480, 159943859712000, 26453863460044800, 470500040794291200, 20720967220237197312, 61690805562507264000
Offset: 0
For n = 4, the partition A = {1,5,6,7} and B = {2,3,4,8} is optimal, giving difference 1*5*6*7 - 2*3*4*8 = 18.
_Rob Pratt_ computed the optimal solutions for n <= 10:
[ n] a(n) partitions of 2n
------------------------------------------------------------------
[ 1] 1 2 | 1
[ 2] 2 2,3 | 1,4
[ 3] 6 1,5,6 | 2,3,4
[ 4] 18 1,5,6,7 | 2,3,4,8
[ 5] 30 2,3,4,8,10 | 1,5,6,7,9
[ 6] 576 1,4,7,8,9,11 | 2,3,5,6,10,12
[ 7] 840 2,4,5,6,8,11,14 | 1,3,7,9,10,12,13
[ 8] 24480 1,5,6,7,8,13,14,15 | 2,3,4,9,10,11,12,16
[ 9] 93696 2,3,6,8,9,11,12,13,18 | 1,4,5,7,10,14,15,16,17
[10] 800640 2,3,4,8,9,11,12,18,19,20 | 1,5,6,7,10,13,14,15,16,17
Comments