A056827 a(n) = floor(n^2/6).
0, 0, 0, 1, 2, 4, 6, 8, 10, 13, 16, 20, 24, 28, 32, 37, 42, 48, 54, 60, 66, 73, 80, 88, 96, 104, 112, 121, 130, 140, 150, 160, 170, 181, 192, 204, 216, 228, 240, 253, 266, 280, 294, 308, 322, 337, 352, 368, 384, 400, 416, 433, 450, 468, 486, 504
Offset: 0
Examples
5| .__.__. .| /| | | 4| .__.__./_|__|__| .| /| | | | | | 3| .__.__./_|__|__|__|__|__| .| /| | | | | | | | | 2| .__.__./_|__|__|__|__|__|__|__|__| .| /| | | | | | | | | | | | 1| .__.__./_|__|__|__|__|__|__|__|__|__|__|__| .| /| | | | | | | | | | | | | | | 0|.__.__./_|__|__|__|__|__|__|__|__|__|__|__|__|__|__|_________________ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 .. n 0 0 0 1 2 4 6 8 10 13 16 20 24 28 32 37 42 48 .. a(n) 0 0 0 1 2 4 6 8 10 13 16 20 24 28 32 37 42 .. a(n-1) <--
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,1,-2,1).
Crossrefs
Programs
-
GAP
List([0..60], n-> Int(n^2/6) ); # G. C. Greubel, Jul 23 2019
-
Magma
[Floor(n^2/6): n in [0..60]]; // Vincenzo Librandi, May 08 2011
-
Maple
A056827:=n->floor(n^2/6); seq(A056827(k), k=0..60); # Wesley Ivan Hurt, Oct 29 2013
-
Mathematica
Floor[Range[0,60]^2/6] (* or *) LinearRecurrence[{2,-1,0,0,0,1,-2,1}, {0,0,0,1,2,4,6,8}, 60] (* Harvey P. Dale, Jun 06 2013 *)
-
PARI
n^2\6 \\ Charles R Greathouse IV, May 08 2011
-
Sage
[floor(n^2/6) for n in (0..60)] # G. C. Greubel, Jul 23 2019
Formula
From R. J. Mathar, Nov 22 2008: (Start)
G.f.: x^3*(1+x^2)/((1+x)*(1-x)^3*(1+x+x^2)*(1-x+x^2)).
a(n+1) - a(n) = A123919(n). (End)
a(n) = floor( (1/2) * Sum_{i=1..n+1} (ceiling(i/3) + floor(i/3) - 1) ). - Wesley Ivan Hurt, Jun 06 2014
Sum_{n>=3} 1/a(n) = 15/8 + Pi^2/36 - Pi/(4*sqrt(3)) + tan(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)). - Amiram Eldar, Aug 13 2022
Comments