A056903 Numbers n such that the numerator of the rational number 1 + 1/2 + 1/3 + ... + 1/n is a prime number.
2, 3, 5, 8, 9, 21, 26, 41, 56, 62, 69, 79, 89, 91, 122, 127, 143, 167, 201, 230, 247, 252, 290, 349, 376, 459, 489, 492, 516, 662, 687, 714, 771, 932, 944, 1061, 1281, 1352, 1489, 1730, 1969, 2012, 2116, 2457, 2663, 2955, 3083, 3130, 3204, 3359, 3494, 3572
Offset: 1
Keywords
Examples
5 is in this sequence because 1+1/2+1/3+1/4+1/5 = 137/60 and 137 is prime.
Links
- Eric Weisstein, Table of n, a(n) for n = 1..97
- J. Sondow and E. W. Weisstein, MathWorld: Harmonic Number
- Eric Weisstein's World of Mathematics, Integer Sequence Primes
Crossrefs
Programs
-
Mathematica
Select[Range[1000], PrimeQ[Numerator[HarmonicNumber[ # ]]] &]
-
PARI
isok(n) = isprime(numerator(sum(k=1, n, 1/k))); \\ Michel Marcus, Feb 05 2016
-
Perl
use ntheory ":all"; for (1..1000) { say if is_prime((harmfrac($))[0]); } # _Dana Jacobsen, Feb 05 2016
Extensions
Terms from 201 to 492 computed by Jud McCranie.
More terms from Kamil Duszenko (kdusz(AT)wp.pl), Jun 22 2003
29 more terms from T. D. Noe, Sep 15 2004
Further terms found by Eric W. Weisstein, Mar 07 2005, Mar 29 2005, Nov 28 2005, Sep 23 2006
Comments