A056924 Number of divisors of n that are smaller than sqrt(n).
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 3, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, 2, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 4, 1, 4, 1, 4, 4
Offset: 1
Keywords
Examples
a(16)=2 since the divisors of 16 are 1,2,4,8,16 of which 2 are less than sqrt(16) = 4. From _Labos Elemer_, Apr 19 2002: (Start) n=96: a(96) = Card[{1,2,3,4,6,8}] = 6 = Card[{12,16,24,32,48,96}]; n=225: a(225) = Card[{1,3,5,9}] = Card[{15,25,45,7,225}]-1. (End)
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- Cristina Ballantine and Mircea Merca, New convolutions for the number of divisors, Journal of Number Theory, Vol. 170 (2016), pp. 17-34.
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph invariants based on the divides relation and ordered by prime signatures, arXiv:1405.5283 [math.NT], 2014, eq. (2.29).
Programs
-
Haskell
a056924 = (`div` 2) . a000005 -- Reinhard Zumkeller, Jul 12 2013
-
Maple
with(numtheory); A056924 := n->floor(tau(n)/2); seq(A056924(k),k=1..100); # Wesley Ivan Hurt, Jun 14 2013
-
Mathematica
di[x_] := Divisors[x] lds[x_] := Ceiling[DivisorSigma[0, x]/2] rd[x_] := Reverse[Divisors[x]] td[x_] := Table[Part[rd[x], w], {w, 1, lds[x]}] sud[x_] := Apply[Plus, td[x]] Table[DivisorSigma[0, w]-lds[w], {w, 1, 128}] (* Labos Elemer, Apr 19 2002 *) Table[Length[Select[Divisors[n], # < Sqrt[n] &]], {n, 100}] (* T. D. Noe, Jul 11 2013 *) a[n_] := Floor[DivisorSigma[0, n]/2]; Array[a, 100] (* Amiram Eldar, Jun 26 2022 *)
-
PARI
a(n)=if(n<1, 0, numdiv(n)\2) /* Michael Somos, Mar 18 2006 */
-
Python
from sympy import divisor_count def A056924(n): return divisor_count(n)//2 # Chai Wah Wu, Jun 25 2022
Formula
For n>1, a(n) = floor[log(A007955(n))/log(n)] = log(A056925(n))/log(n) = floor[d(n)/2] = floor[A000005(n)/2] = ( A000005(n)-A010052(n) )/2.
G.f.: Sum_{k>0} x^(k^2+k)/(1-x^k). - Michael Somos, Mar 18 2006
a(n) = (1/2) * Sum_{d|n} (1 - [d = n/d]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
Extensions
Edited by Michael Somos, Mar 18 2006
Comments