cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056924 Number of divisors of n that are smaller than sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 3, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, 2, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 4, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Henry Bottomley, Jul 12 2000

Keywords

Comments

Number of powers of n in product of factors of n if n>1.
Also, the number of solutions to the Pell equation x^2 - y^2 = 4n. - Ralf Stephan, Sep 20 2013
If n is a prime or the square of a prime, then a(n)=1.
Number of positive integer solutions to the equation x^2 + k*x - n = 0, for all k in 1 <= k <= n. - Wesley Ivan Hurt, Dec 27 2020
Number of pairs of distinct divisors (d,n/d) of n, with dWesley Ivan Hurt, Nov 09 2023

Examples

			a(16)=2 since the divisors of 16 are 1,2,4,8,16 of which 2 are less than sqrt(16) = 4.
From _Labos Elemer_, Apr 19 2002: (Start)
n=96: a(96) = Card[{1,2,3,4,6,8}] = 6 = Card[{12,16,24,32,48,96}];
n=225: a(225) = Card[{1,3,5,9}] = Card[{15,25,45,7,225}]-1. (End)
		

Crossrefs

Cf. A227068 (records).

Programs

  • Haskell
    a056924 = (`div` 2) . a000005  -- Reinhard Zumkeller, Jul 12 2013
    
  • Maple
    with(numtheory); A056924 := n->floor(tau(n)/2); seq(A056924(k),k=1..100); # Wesley Ivan Hurt, Jun 14 2013
  • Mathematica
    di[x_] := Divisors[x] lds[x_] := Ceiling[DivisorSigma[0, x]/2] rd[x_] := Reverse[Divisors[x]] td[x_] := Table[Part[rd[x], w], {w, 1, lds[x]}] sud[x_] := Apply[Plus, td[x]] Table[DivisorSigma[0, w]-lds[w], {w, 1, 128}] (* Labos Elemer, Apr 19 2002 *)
    Table[Length[Select[Divisors[n], # < Sqrt[n] &]], {n, 100}] (* T. D. Noe, Jul 11 2013 *)
    a[n_] := Floor[DivisorSigma[0, n]/2]; Array[a, 100] (* Amiram Eldar, Jun 26 2022 *)
  • PARI
    a(n)=if(n<1, 0, numdiv(n)\2) /* Michael Somos, Mar 18 2006 */
    
  • Python
    from sympy import divisor_count
    def A056924(n): return divisor_count(n)//2 # Chai Wah Wu, Jun 25 2022

Formula

For n>1, a(n) = floor[log(A007955(n))/log(n)] = log(A056925(n))/log(n) = floor[d(n)/2] = floor[A000005(n)/2] = ( A000005(n)-A010052(n) )/2.
a(n) = A000005(n) - A038548(n). - Labos Elemer, Apr 19 2002
G.f.: Sum_{k>0} x^(k^2+k)/(1-x^k). - Michael Somos, Mar 18 2006
a(n) = (1/2) * Sum_{d|n} (1 - [d = n/d]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021

Extensions

Edited by Michael Somos, Mar 18 2006